Noah Petherbridge
524ebebedb
* Add initial Ellipse Tool to the Editor Mode. Currently there's something wrong with the algorithm and the ellipses have a sort of 'lemon shape' to them. * Refactor the IterLine/IterLine2 functions to be more consistent. IterLine used to be the raw algorithm that took a bunch of coordinate numbers and IterLine2 took two render.Point's and was the main one used throughout the app. Now, IterLine takes the two Points and the raw algorithm function removed.
199 lines
3.6 KiB
Go
199 lines
3.6 KiB
Go
package render
|
|
|
|
import (
|
|
"math"
|
|
|
|
"git.kirsle.net/apps/doodle/pkg/log"
|
|
)
|
|
|
|
// IterLine is a generator that returns the X,Y coordinates to draw a line.
|
|
// https://en.wikipedia.org/wiki/Digital_differential_analyzer_(graphics_algorithm)
|
|
func IterLine(p1 Point, p2 Point) chan Point {
|
|
var (
|
|
x1 = p1.X
|
|
y1 = p1.Y
|
|
x2 = p2.X
|
|
y2 = p2.Y
|
|
)
|
|
generator := make(chan Point)
|
|
|
|
go func() {
|
|
var (
|
|
dx = float64(x2 - x1)
|
|
dy = float64(y2 - y1)
|
|
)
|
|
var step float64
|
|
if math.Abs(dx) >= math.Abs(dy) {
|
|
step = math.Abs(dx)
|
|
} else {
|
|
step = math.Abs(dy)
|
|
}
|
|
|
|
dx = dx / step
|
|
dy = dy / step
|
|
x := float64(x1)
|
|
y := float64(y1)
|
|
for i := 0; i <= int(step); i++ {
|
|
generator <- Point{
|
|
X: int32(x),
|
|
Y: int32(y),
|
|
}
|
|
x += dx
|
|
y += dy
|
|
}
|
|
|
|
close(generator)
|
|
}()
|
|
|
|
return generator
|
|
}
|
|
|
|
// IterRect loops through all the points forming a rectangle between the
|
|
// top-left point and the bottom-right point.
|
|
func IterRect(p1, p2 Point) chan Point {
|
|
generator := make(chan Point)
|
|
|
|
go func() {
|
|
var (
|
|
TopLeft = p1
|
|
BottomRight = p2
|
|
TopRight = Point{
|
|
X: BottomRight.X,
|
|
Y: TopLeft.Y,
|
|
}
|
|
BottomLeft = Point{
|
|
X: TopLeft.X,
|
|
Y: BottomRight.Y,
|
|
}
|
|
dedupe = map[Point]interface{}{}
|
|
)
|
|
|
|
// Trace all four edges and yield it.
|
|
var edges = []struct {
|
|
A Point
|
|
B Point
|
|
}{
|
|
{TopLeft, TopRight},
|
|
{TopLeft, BottomLeft},
|
|
{BottomLeft, BottomRight},
|
|
{TopRight, BottomRight},
|
|
}
|
|
for _, edge := range edges {
|
|
for pt := range IterLine(edge.A, edge.B) {
|
|
if _, ok := dedupe[pt]; !ok {
|
|
generator <- pt
|
|
dedupe[pt] = nil
|
|
}
|
|
}
|
|
}
|
|
|
|
close(generator)
|
|
}()
|
|
|
|
return generator
|
|
}
|
|
|
|
// IterEllipse is a generator that draws out the pixels of an ellipse.
|
|
func IterEllipse(rx, ry, xc, yc float32) chan Point {
|
|
generator := make(chan Point)
|
|
|
|
mkPoint := func(x, y float32) Point {
|
|
return NewPoint(int32(x), int32(y))
|
|
}
|
|
|
|
go func() {
|
|
var (
|
|
dx float32
|
|
dy float32
|
|
d1 float32
|
|
d2 float32
|
|
x float32
|
|
y = ry
|
|
)
|
|
|
|
d1 = (ry * ry) - (rx * rx * ry) + (0.25 * rx * rx)
|
|
dx = 2 * ry * ry * x
|
|
dy = 2 * rx * rx * y
|
|
|
|
// For region 1
|
|
for dx < dy {
|
|
// Yields points based on 4-way symmetry.
|
|
for _, point := range []Point{
|
|
mkPoint(x+xc, y+yc),
|
|
mkPoint(-x+xc, y+yc),
|
|
mkPoint(x+xc, -y+yc),
|
|
mkPoint(-x+xc, -y+yc),
|
|
} {
|
|
generator <- point
|
|
}
|
|
|
|
if d1 < 0 {
|
|
x++
|
|
dx = dx + (2 * ry * ry)
|
|
d1 = d1 + dx + (ry * ry)
|
|
} else {
|
|
x++
|
|
y--
|
|
dx = dx + (2 * ry * ry)
|
|
dy = dy - (2 * rx * rx)
|
|
d1 = d1 + dx - dy + (ry * ry)
|
|
}
|
|
}
|
|
|
|
d2 = ((ry * ry) + ((x + 0.5) * (x + 0.5))) +
|
|
((rx * rx) * ((y - 1) * (y - 1))) -
|
|
(rx * rx * ry * ry)
|
|
|
|
// Region 2
|
|
for y >= 0 {
|
|
// Yields points based on 4-way symmetry.
|
|
for _, point := range []Point{
|
|
mkPoint(x+xc, y+yc),
|
|
mkPoint(-x+xc, y+yc),
|
|
mkPoint(x+xc, -y+yc),
|
|
mkPoint(-x+xc, -y+yc),
|
|
} {
|
|
generator <- point
|
|
}
|
|
|
|
if d2 > 0 {
|
|
y--
|
|
dy = dy - (2 * rx * rx)
|
|
d2 = d2 + (rx * rx) - dy
|
|
} else {
|
|
y--
|
|
x++
|
|
dx = dx + (2 * ry * ry)
|
|
dy = dy - (2 * rx * rx)
|
|
d2 = d2 + dx - dy + (rx * rx)
|
|
}
|
|
}
|
|
|
|
close(generator)
|
|
}()
|
|
|
|
return generator
|
|
}
|
|
|
|
// IterEllipse2 iterates an Ellipse using two Points as the top-left and
|
|
// bottom-right corners of a rectangle that encompasses the ellipse.
|
|
func IterEllipse2(A, B Point) chan Point {
|
|
var (
|
|
// xc = float32(A.X+B.X) / 2
|
|
// yc = float32(A.Y+B.Y) / 2
|
|
xc = float32(B.X)
|
|
yc = float32(B.Y)
|
|
rx = float32(B.X - A.X)
|
|
ry = float32(B.Y - A.Y)
|
|
)
|
|
|
|
if rx < 0 {
|
|
rx = -rx
|
|
}
|
|
if ry < 0 {
|
|
ry = -ry
|
|
}
|
|
log.Info("Ellipse btwn=%s-%s radius=%f,%f at center %f,%f", A, B, rx, ry, xc, yc)
|
|
return IterEllipse(rx, ry, xc, yc)
|
|
}
|