Lemon-shaped Ellipse Tool (WIP)

* Add initial Ellipse Tool to the Editor Mode. Currently there's
  something wrong with the algorithm and the ellipses have a sort of
  'lemon shape' to them.
* Refactor the IterLine/IterLine2 functions to be more consistent.
  IterLine used to be the raw algorithm that took a bunch of coordinate
  numbers and IterLine2 took two render.Point's and was the main one
  used throughout the app. Now, IterLine takes the two Points and the
  raw algorithm function removed.
master
Noah 2019-07-14 14:18:44 -07:00
parent 53977f709f
commit 524ebebedb
3 changed files with 199 additions and 88 deletions

View File

@ -44,7 +44,7 @@ func (e *Engine) DrawPoint(color render.Color, point render.Point) {
// DrawLine draws a line between two points.
func (e *Engine) DrawLine(color render.Color, a, b render.Point) {
e.canvas.ctx2d.Set("fillStyle", RGBA(color))
for pt := range render.IterLine2(a, b) {
for pt := range render.IterLine(a, b) {
e.canvas.ctx2d.Call("fillRect",
int(pt.X),
int(pt.Y),

View File

@ -3,7 +3,6 @@ package render
import (
"fmt"
"image"
"math"
"git.kirsle.net/apps/doodle/lib/events"
)
@ -195,89 +194,3 @@ var (
Purple = RGBA(153, 0, 153, 255)
Pink = RGBA(255, 153, 255, 255)
)
// IterLine is a generator that returns the X,Y coordinates to draw a line.
// https://en.wikipedia.org/wiki/Digital_differential_analyzer_(graphics_algorithm)
func IterLine(x1, y1, x2, y2 int32) chan Point {
generator := make(chan Point)
go func() {
var (
dx = float64(x2 - x1)
dy = float64(y2 - y1)
)
var step float64
if math.Abs(dx) >= math.Abs(dy) {
step = math.Abs(dx)
} else {
step = math.Abs(dy)
}
dx = dx / step
dy = dy / step
x := float64(x1)
y := float64(y1)
for i := 0; i <= int(step); i++ {
generator <- Point{
X: int32(x),
Y: int32(y),
}
x += dx
y += dy
}
close(generator)
}()
return generator
}
// IterLine2 works with two Points rather than four coordinates.
func IterLine2(p1 Point, p2 Point) chan Point {
return IterLine(p1.X, p1.Y, p2.X, p2.Y)
}
// IterRect loops through all the points forming a rectangle between the
// top-left point and the bottom-right point.
func IterRect(p1, p2 Point) chan Point {
generator := make(chan Point)
go func() {
var (
TopLeft = p1
BottomRight = p2
TopRight = Point{
X: BottomRight.X,
Y: TopLeft.Y,
}
BottomLeft = Point{
X: TopLeft.X,
Y: BottomRight.Y,
}
dedupe = map[Point]interface{}{}
)
// Trace all four edges and yield it.
var edges = []struct {
A Point
B Point
}{
{TopLeft, TopRight},
{TopLeft, BottomLeft},
{BottomLeft, BottomRight},
{TopRight, BottomRight},
}
for _, edge := range edges {
for pt := range IterLine2(edge.A, edge.B) {
if _, ok := dedupe[pt]; !ok {
generator <- pt
dedupe[pt] = nil
}
}
}
close(generator)
}()
return generator
}

198
shapes.go Normal file
View File

@ -0,0 +1,198 @@
package render
import (
"math"
"git.kirsle.net/apps/doodle/pkg/log"
)
// IterLine is a generator that returns the X,Y coordinates to draw a line.
// https://en.wikipedia.org/wiki/Digital_differential_analyzer_(graphics_algorithm)
func IterLine(p1 Point, p2 Point) chan Point {
var (
x1 = p1.X
y1 = p1.Y
x2 = p2.X
y2 = p2.Y
)
generator := make(chan Point)
go func() {
var (
dx = float64(x2 - x1)
dy = float64(y2 - y1)
)
var step float64
if math.Abs(dx) >= math.Abs(dy) {
step = math.Abs(dx)
} else {
step = math.Abs(dy)
}
dx = dx / step
dy = dy / step
x := float64(x1)
y := float64(y1)
for i := 0; i <= int(step); i++ {
generator <- Point{
X: int32(x),
Y: int32(y),
}
x += dx
y += dy
}
close(generator)
}()
return generator
}
// IterRect loops through all the points forming a rectangle between the
// top-left point and the bottom-right point.
func IterRect(p1, p2 Point) chan Point {
generator := make(chan Point)
go func() {
var (
TopLeft = p1
BottomRight = p2
TopRight = Point{
X: BottomRight.X,
Y: TopLeft.Y,
}
BottomLeft = Point{
X: TopLeft.X,
Y: BottomRight.Y,
}
dedupe = map[Point]interface{}{}
)
// Trace all four edges and yield it.
var edges = []struct {
A Point
B Point
}{
{TopLeft, TopRight},
{TopLeft, BottomLeft},
{BottomLeft, BottomRight},
{TopRight, BottomRight},
}
for _, edge := range edges {
for pt := range IterLine(edge.A, edge.B) {
if _, ok := dedupe[pt]; !ok {
generator <- pt
dedupe[pt] = nil
}
}
}
close(generator)
}()
return generator
}
// IterEllipse is a generator that draws out the pixels of an ellipse.
func IterEllipse(rx, ry, xc, yc float32) chan Point {
generator := make(chan Point)
mkPoint := func(x, y float32) Point {
return NewPoint(int32(x), int32(y))
}
go func() {
var (
dx float32
dy float32
d1 float32
d2 float32
x float32
y = ry
)
d1 = (ry * ry) - (rx * rx * ry) + (0.25 * rx * rx)
dx = 2 * ry * ry * x
dy = 2 * rx * rx * y
// For region 1
for dx < dy {
// Yields points based on 4-way symmetry.
for _, point := range []Point{
mkPoint(x+xc, y+yc),
mkPoint(-x+xc, y+yc),
mkPoint(x+xc, -y+yc),
mkPoint(-x+xc, -y+yc),
} {
generator <- point
}
if d1 < 0 {
x++
dx = dx + (2 * ry * ry)
d1 = d1 + dx + (ry * ry)
} else {
x++
y--
dx = dx + (2 * ry * ry)
dy = dy - (2 * rx * rx)
d1 = d1 + dx - dy + (ry * ry)
}
}
d2 = ((ry * ry) + ((x + 0.5) * (x + 0.5))) +
((rx * rx) * ((y - 1) * (y - 1))) -
(rx * rx * ry * ry)
// Region 2
for y >= 0 {
// Yields points based on 4-way symmetry.
for _, point := range []Point{
mkPoint(x+xc, y+yc),
mkPoint(-x+xc, y+yc),
mkPoint(x+xc, -y+yc),
mkPoint(-x+xc, -y+yc),
} {
generator <- point
}
if d2 > 0 {
y--
dy = dy - (2 * rx * rx)
d2 = d2 + (rx * rx) - dy
} else {
y--
x++
dx = dx + (2 * ry * ry)
dy = dy - (2 * rx * rx)
d2 = d2 + dx - dy + (rx * rx)
}
}
close(generator)
}()
return generator
}
// IterEllipse2 iterates an Ellipse using two Points as the top-left and
// bottom-right corners of a rectangle that encompasses the ellipse.
func IterEllipse2(A, B Point) chan Point {
var (
// xc = float32(A.X+B.X) / 2
// yc = float32(A.Y+B.Y) / 2
xc = float32(B.X)
yc = float32(B.Y)
rx = float32(B.X - A.X)
ry = float32(B.Y - A.Y)
)
if rx < 0 {
rx = -rx
}
if ry < 0 {
ry = -ry
}
log.Info("Ellipse btwn=%s-%s radius=%f,%f at center %f,%f", A, B, rx, ry, xc, yc)
return IterEllipse(rx, ry, xc, yc)
}