doodle/pkg/uix/actor_collision.go
Noah Petherbridge d14eaf7df2 Collision Box Updates
* The F4 key to draw collision boxes works reliably again: it draws the
  player's hitbox in world-space using the canvas.DrawStrokes()
  function, rather than in screen-space so it follows the player
  reliably.
* The F4 key also draws hitboxes for ALL other actors in the level:
  buttons, enemies, doors, etc.
* The level geometry collision function is updated to respect a doodad's
  declared Hitbox from their script, which may result in a smaller box
  than their raw Canvas size. The result is tighter collision between
  doodads, and Boy's sprite is rather narrow for its square Canvas so
  collision on rightward geometry is tighter for the player character.
* Collision checks between actors also respect the actor's declared
  hitboxes now, allowing for Boy to get even closer to a locked door
  before being blocked.
2021-06-02 20:50:28 -07:00

304 lines
9.1 KiB
Go

package uix
import (
"errors"
"sync"
"time"
"git.kirsle.net/apps/doodle/pkg/balance"
"git.kirsle.net/apps/doodle/pkg/collision"
"git.kirsle.net/apps/doodle/pkg/log"
"git.kirsle.net/apps/doodle/pkg/physics"
"git.kirsle.net/apps/doodle/pkg/scripting"
"git.kirsle.net/go/render"
"github.com/robertkrimen/otto"
)
// loopActorCollision is the Loop function that checks if pairs of
// actors are colliding with each other, and handles their scripting
// responses to such collisions.
func (w *Canvas) loopActorCollision() error {
if w.scripting == nil {
return errors.New("Canvas.loopActorCollision: scripting engine not attached to Canvas")
}
var (
// Current time of this tick so we can advance animations.
now = time.Now()
// As we iterate over all actors below to process their movement, track
// their bounding rectangles so we can later see if any pair of actors
// intersect each other. Also, in case of actor scripts protesting a
// collision later, store each actor's original position before the move.
boxes = make([]render.Rect, len(w.actors))
originalPositions = map[string]render.Point{}
)
// Loop over all the actors in parallel, processing their movement and
// checking collision data against the level geometry.
var wg sync.WaitGroup
for i, a := range w.actors {
wg.Add(1)
go func(i int, a *Actor) {
defer wg.Done()
originalPositions[a.ID()] = a.Position()
// Advance any animations for this actor.
if a.activeAnimation != nil && a.activeAnimation.nextFrameAt.Before(now) {
if done := a.TickAnimation(a.activeAnimation); done {
// Animation has finished, get the callback function.
callback := a.animationCallback
// Clean up the animation state, in case the callback wants
// to immediately play another animation.
a.StopAnimation()
// Call the callback function.
if callback.IsFunction() {
callback.Call(otto.NullValue())
}
}
}
// Get the actor's velocity to see if it's moving this tick.
v := a.Velocity()
// Apply gravity to the actor's velocity.
if a.hasGravity && !a.Grounded() { //v.Y >= 0 {
if !a.Grounded() {
v.Y = physics.Lerp(
v.Y, // current speed
balance.Gravity, // target max gravity falling downwards
balance.PlayerAcceleration,
)
} else {
v.Y = 0
}
a.SetVelocity(v)
// v.Y += balance.Gravity
}
// If not moving, grab the bounding box right now.
if v.IsZero() {
boxes[i] = collision.GetBoundingRect(a)
return
}
// Create a delta point from their current location to where they
// want to move to this tick.
delta := physics.VectorFromPoint(a.Position())
delta.Add(v)
// Check collision with level geometry.
chkPoint := delta.ToPoint()
info, ok := collision.CollidesWithGrid(a, w.chunks, chkPoint)
if ok {
// Collision happened with world.
if w.OnLevelCollision != nil {
w.OnLevelCollision(a, info)
}
}
// Move us back where the collision check put us
if !a.noclip {
delta = physics.VectorFromPoint(info.MoveTo)
}
// Move the actor's World Position to the new location.
a.MoveTo(delta.ToPoint())
// Keep the actor from leaving the world borders of bounded maps.
w.loopContainActorsInsideLevel(a)
// Store this actor's bounding box after they've moved.
boxes[i] = collision.SizePlusHitbox(collision.GetBoundingRect(a), a.Hitbox())
}(i, a)
wg.Wait()
}
var collidingActors = map[string]string{}
for tuple := range collision.BetweenBoxes(boxes) {
a, b := w.actors[tuple.A], w.actors[tuple.B]
// If neither actor is mobile, don't run collision handlers.
if !(a.IsMobile() || b.IsMobile()) {
continue
}
collidingActors[a.ID()] = b.ID()
// log.Error("between boxes: %+v <%s> <%s>", tuple, a.ID(), b.ID())
// Call the OnCollide handler for A informing them of B's intersection.
if w.scripting != nil {
var (
rect = collision.SizePlusHitbox(collision.GetBoundingRect(b), b.Hitbox())
lastGoodBox = render.Rect{
X: originalPositions[b.ID()].X,
Y: originalPositions[b.ID()].Y,
W: boxes[tuple.B].W,
H: boxes[tuple.B].H,
}
)
// HACK: below, when we determine the moving actor is "onTop" of
// the doodad's solid hitbox, we lockY their movement so they don't
// fall down further; but sometimes there's an off-by-one error if
// the actor fell a distance before landing, and so the final
// Settled collision check doesn't fire (i.e. if they fell onto a
// Crumbly Floor which should begin shaking when walked on).
//
// When we decide they're onTop, record the Y position, and then
// use it for collision-check purposes but DON'T physically move
// the character by it (moving the character may clip them thru
// other solid hitboxes like the upside-down trapdoor)
var onTopY int
// Firstly we want to make sure B isn't able to clip through A's
// solid hitbox if A protests the movement. Trace a vector from
// B's original position to their current one and ping A's
// OnCollide handler for each step, with Settled=false. A should
// only return false if it protests the movement, but not trigger
// any actions (such as emit messages to linked doodads) until
// Settled=true.
if origPoint, ok := originalPositions[b.ID()]; ok {
// Trace a vector back from the actor's current position
// to where they originated from. If A protests B's position at
// ANY time, we mark didProtest=true and continue backscanning
// B's movement. The next time A does NOT protest, that is to be
// B's new position.
// Special case for when a mobile actor lands ON TOP OF a solid
// actor. We want to stop their Y movement downwards, but allow
// horizontal movement on the X axis.
// Touching the solid actor from the side is already fine.
var onTop = false
var (
lockX int
lockY int
)
for point := range render.IterLine(
origPoint,
b.Position(),
) {
point := point
test := render.Rect{
X: point.X,
Y: point.Y,
W: rect.W,
H: rect.H,
}
if info, err := collision.CompareBoxes(boxes[tuple.A], test); err == nil {
// B is overlapping A's box, call its OnCollide handler
// with Settled=false and see if it protests the overlap.
err := w.scripting.To(a.ID()).Events.RunCollide(&CollideEvent{
Actor: b,
Overlap: info.Overlap,
InHitbox: info.Overlap.Intersects(a.Hitbox()),
Settled: false,
})
// Did A protest?
if err == scripting.ErrReturnFalse {
// Are they on top?
aHitbox := collision.SizePlusHitbox(collision.GetBoundingRect(a), a.Hitbox())
if render.AbsInt(test.Y+test.H-aHitbox.Y) == 0 {
onTop = true
onTopY = test.Y
}
// What direction were we moving?
if test.Y != lastGoodBox.Y {
if lockY == 0 {
lockY = lastGoodBox.Y
}
if onTop {
b.SetGrounded(true)
}
}
if test.X != lastGoodBox.X {
if !onTop {
lockX = lastGoodBox.X
}
}
// Move them back to the last good box.
lastGoodBox = test
if lockX != 0 {
lastGoodBox.X = lockX
}
} else {
// Move them back to the last good box.
lastGoodBox = test
}
} else {
// No collision between boxes, increment the lastGoodBox
lastGoodBox = test
}
}
// Did we lock their X or Y coordinate from moving further?
if lockY != 0 {
lastGoodBox.Y = lockY
}
if lockX != 0 {
lastGoodBox.X = lockX
}
if !b.noclip {
b.MoveTo(lastGoodBox.Point())
}
} else {
log.Error(
"ERROR: Actors %s and %s overlap and the script returned false,"+
"but I didn't store %s original position earlier??",
a.Doodad().Title, b.Doodad().Title, b.Doodad().Title,
)
}
if onTopY != 0 && lastGoodBox.Y-onTopY <= 1 {
lastGoodBox.Y = onTopY
}
// Movement has been settled. Check if B's point is still invading
// A's box and call its OnCollide handler one last time in
// Settled=true mode so it can run its actions.
if info, err := collision.CompareBoxes(boxes[tuple.A], lastGoodBox); err == nil {
if err := w.scripting.To(a.ID()).Events.RunCollide(&CollideEvent{
Actor: b,
Overlap: info.Overlap,
InHitbox: info.Overlap.Intersects(a.Hitbox()),
Settled: true,
}); err != nil && err != scripting.ErrReturnFalse {
log.Error("VM(%s).RunCollide: %s", a.ID(), err.Error())
}
// If the (player) is pressing the Use key, call the colliding
// actor's OnUse event.
if b.flagUsing {
if err := w.scripting.To(a.ID()).Events.RunUse(&UseEvent{
Actor: b,
}); err != nil {
log.Error("VM(%s).RunUse: %s", a.ID(), err.Error())
}
}
}
}
}
// Check for lacks of collisions since last frame.
for sourceID, targetID := range w.collidingActors {
if _, ok := collidingActors[sourceID]; !ok {
w.scripting.To(sourceID).Events.RunLeave(targetID)
}
}
// Store this frame's colliding actors for next frame.
w.collidingActors = collidingActors
return nil
}