doodle/pkg/level/chunker.go
Noah Petherbridge ddcad27485 WIP: Chunker size to uint8 and Rectangular Doodads
Convert the Chunker size to a uint8 so chunk sizes are limited to 255px. This
means that inside of a chunk, uint8's can track the relative pixel coordinates
and result in a great memory savings since all of these uint8's are currently
64-bits wide apiece.

WIP on rectangular shaped doodads:
* You can create such a doodad in the editor and draw it normally.
* It doesn't draw the right size when dragged into your level however:
  - In uix.Actor.Size() it gets a rect of the doodad's square Chunker size,
    instead of getting the proper doodad.Size rect.
  - If you give it the doodad.Size rect, it draws the Canvas size correctly
    instead of a square - the full drawing appears and in gameplay its hitbox
    (assuming the same large rectangle size) works correctly in-game.
  - But, the doodad has scrolling issues when it gets to the top or left edge
    of the screen! This old gnarly bug has come back. For some reason square
    canvas doodads draw correctly but rectangular ones have the drawing scroll
    just a bit - how far it scrolls is proportional to how big the doodad is,
    with the Start Flag only scrolling a few pixels before it stops.
2023-02-16 21:47:18 -08:00

623 lines
16 KiB
Go

package level
import (
"archive/zip"
"encoding/json"
"fmt"
"math"
"sync"
"git.kirsle.net/SketchyMaze/doodle/pkg/balance"
"git.kirsle.net/SketchyMaze/doodle/pkg/log"
"git.kirsle.net/SketchyMaze/doodle/pkg/shmem"
"git.kirsle.net/go/render"
)
// Chunker is the data structure that manages the chunks of a level, and
// provides the API to interact with the pixels using their absolute coordinates
// while abstracting away the underlying details.
type Chunker struct {
// Layer is optional for the caller, levels use only 0 and
// doodads use them for frames. When chunks are exported to
// zipfile the Layer keeps them from overlapping.
Layer int `json:"-"` // internal use only
Size uint8 `json:"size"`
// A Zipfile reference for new-style levels and doodads which
// keep their chunks in external parts of a zip file.
Zipfile *zip.Reader `json:"-"`
// Chunks, oh boy.
// The v1 drawing format had all the chunks in the JSON file.
// New drawings write them to zips. Legacy drawings can be converted
// simply by loading and resaving: their Chunks loads from JSON and
// is committed to zipfile on save. This makes Chunks also a good
// cache even when we have a zipfile to fall back on.
Chunks ChunkMap `json:"chunks"`
chunkMu sync.RWMutex
// If we have a zipfile, only keep chunks warm in memory if they
// are actively wanted by the game.
lastTick uint64 // NOTE: tracks from shmem.Tick
chunkRequestsThisTick map[render.Point]interface{}
requestsN1 map[render.Point]interface{} // chunks accessed last tick
requestsN2 map[render.Point]interface{} // 2 ticks ago (to free soon)
chunksToFree map[render.Point]uint64 // chopping block (free after X ticks)
ctfMu sync.Mutex // lock for chunksToFree
requestMu sync.Mutex
// The palette reference from first call to Inflate()
pal *Palette
}
// NewChunker creates a new chunk manager with a given chunk size.
func NewChunker(size uint8) *Chunker {
return &Chunker{
Size: size,
Chunks: ChunkMap{},
chunkRequestsThisTick: map[render.Point]interface{}{},
requestsN1: map[render.Point]interface{}{},
requestsN2: map[render.Point]interface{}{},
chunksToFree: map[render.Point]uint64{},
}
}
// Inflate iterates over the pixels in the (loaded) chunks and expands any
// Sparse Swatches (which have only their palette index, from the file format
// on disk) to connect references to the swatches in the palette.
func (c *Chunker) Inflate(pal *Palette) error {
c.pal = pal
c.chunkMu.RLock()
defer c.chunkMu.RUnlock()
for coord, chunk := range c.Chunks {
chunk.Point = coord
chunk.Size = c.Size
chunk.Inflate(pal)
}
return nil
}
// IterViewport returns a channel to iterate every point that exists within
// the viewport rect.
func (c *Chunker) IterViewport(viewport render.Rect) <-chan Pixel {
pipe := make(chan Pixel)
go func() {
// Get the chunk box coordinates.
var (
topLeft = c.ChunkCoordinate(render.NewPoint(viewport.X, viewport.Y))
bottomRight = c.ChunkCoordinate(render.Point{
X: viewport.X + viewport.W,
Y: viewport.Y + viewport.H,
})
)
for cx := topLeft.X; cx <= bottomRight.X; cx++ {
for cy := topLeft.Y; cy <= bottomRight.Y; cy++ {
if chunk, ok := c.GetChunk(render.NewPoint(cx, cy)); ok {
for px := range chunk.Iter() {
// Verify this pixel is also in range.
if px.Point().Inside(viewport) {
pipe <- px
}
}
}
}
}
close(pipe)
}()
return pipe
}
// IterChunks returns a channel to iterate over all chunks in the drawing.
func (c *Chunker) IterChunks() <-chan render.Point {
var (
pipe = make(chan render.Point)
sent = map[render.Point]interface{}{}
)
go func() {
c.chunkMu.RLock()
// Send the chunk coords we have in working memory.
// v1 levels: had all their chunks there in their JSON data
// v2 levels: chunks are in zipfile, cached ones are here
for point := range c.Chunks {
sent[point] = nil
pipe <- point
}
c.chunkMu.RUnlock()
// If we have a zipfile, send any remaining chunks that are
// in colder storage.
if c.Zipfile != nil {
for _, point := range ChunksInZipfile(c.Zipfile, c.Layer) {
if _, ok := sent[point]; ok {
continue // Already sent from active memory
}
pipe <- point
}
}
close(pipe)
}()
return pipe
}
/*
IterChunksThemselves iterates all chunks in the drawing rather than coords.
Note: this will mark every chunk as "touched" this frame, so in a zipfile
level will load ALL chunks into memory.
*/
func (c *Chunker) IterChunksThemselves() <-chan *Chunk {
pipe := make(chan *Chunk)
go func() {
for coord := range c.IterChunks() {
if chunk, ok := c.GetChunk(coord); ok {
pipe <- chunk
}
}
close(pipe)
}()
return pipe
}
// IterCachedChunks iterates ONLY over the chunks currently cached in memory,
// e.g. so they can be torn down without loading extra chunks by looping normally.
func (c *Chunker) IterCachedChunks() <-chan *Chunk {
pipe := make(chan *Chunk)
go func() {
c.chunkMu.RLock()
defer c.chunkMu.RUnlock()
for _, chunk := range c.Chunks {
pipe <- chunk
}
close(pipe)
}()
return pipe
}
// IterViewportChunks returns a channel to iterate over the Chunk objects that
// appear within the viewport rect, instead of the pixels in each chunk.
func (c *Chunker) IterViewportChunks(viewport render.Rect) <-chan render.Point {
pipe := make(chan render.Point)
go func() {
var (
sent = make(map[render.Point]interface{})
size = int(c.Size)
)
for x := viewport.X; x < viewport.W; x += (size / 4) {
for y := viewport.Y; y < viewport.H; y += (size / 4) {
// Constrain this chunksize step to a point within the bounds
// of the viewport. This can yield partial chunks on the edges
// of the viewport.
point := render.NewPoint(x, y)
if point.X < viewport.X {
point.X = viewport.X
} else if point.X > viewport.X+viewport.W {
point.X = viewport.X + viewport.W
}
if point.Y < viewport.Y {
point.Y = viewport.Y
} else if point.Y > viewport.Y+viewport.H {
point.Y = viewport.Y + viewport.H
}
// Translate to a chunk coordinate, dedupe and send it.
coord := c.ChunkCoordinate(render.NewPoint(x, y))
if _, ok := sent[coord]; ok {
continue
}
sent[coord] = nil
if _, ok := c.GetChunk(coord); ok {
pipe <- coord
}
}
}
close(pipe)
}()
return pipe
}
// IterPixels returns a channel to iterate over every pixel in the entire
// chunker.
func (c *Chunker) IterPixels() <-chan Pixel {
pipe := make(chan Pixel)
go func() {
for chunk := range c.IterChunksThemselves() {
for px := range chunk.Iter() {
pipe <- px
}
}
close(pipe)
}()
return pipe
}
// WorldSize returns the bounding coordinates that the Chunker has chunks to
// manage: the lowest pixels from the lowest chunks to the highest pixels of
// the highest chunks.
func (c *Chunker) WorldSize() render.Rect {
var (
size = int(c.Size)
chunkLowest, chunkHighest = c.Bounds()
)
return render.Rect{
X: chunkLowest.X * size,
Y: chunkLowest.Y * size,
W: (chunkHighest.X * size) + (size - 1),
H: (chunkHighest.Y * size) + (size - 1),
}
}
// WorldSizePositive returns the WorldSize anchored to 0,0 with only positive
// coordinates.
func (c *Chunker) WorldSizePositive() render.Rect {
S := c.WorldSize()
return render.Rect{
X: 0,
Y: 0,
W: int(math.Abs(float64(S.X))) + S.W,
H: int(math.Abs(float64(S.Y))) + S.H,
}
}
// Bounds returns the boundary points of the lowest and highest chunk which
// have any data in them.
func (c *Chunker) Bounds() (low, high render.Point) {
for coord := range c.IterChunks() {
if coord.X < low.X {
low.X = coord.X
}
if coord.Y < low.Y {
low.Y = coord.Y
}
if coord.X > high.X {
high.X = coord.X
}
if coord.Y > high.Y {
high.Y = coord.Y
}
}
return low, high
}
/*
GetChunk gets a chunk at a certain position. Returns false if not found.
This should be the centralized function to request a Chunk from the Chunker
(or IterChunksThemselves). On old-style levels all of the chunks were just
in memory as part of the JSON struct, in Zip files we can load/unload them
at will from external files.
*/
func (c *Chunker) GetChunk(p render.Point) (*Chunk, bool) {
// It's currently cached in memory?
c.chunkMu.RLock()
chunk, ok := c.Chunks[p]
c.chunkMu.RUnlock()
// Was it on the chopping block for garbage collection?
c.ctfMu.Lock()
delete(c.chunksToFree, p)
c.ctfMu.Unlock()
if ok {
// An empty chunk? We hang onto these until save time to commit
// the empty chunk to ZIP.
if chunk.Len() == 0 {
return nil, false
}
c.logChunkAccess(p, chunk) // for the LRU cache
return chunk, ok
}
// Hit the zipfile for it.
if c.Zipfile != nil {
if chunk, err := ChunkFromZipfile(c.Zipfile, c.Layer, p); err == nil {
// log.Debug("GetChunk(%s) cache miss, read from zip", p)
c.SetChunk(p, chunk) // cache it
c.logChunkAccess(p, chunk) // for the LRU cache
if c.pal != nil {
chunk.Point = p
chunk.Size = c.Size
chunk.Inflate(c.pal)
}
return chunk, true
}
}
// Is our chunk cache getting too full? e.g. on full level
// sweeps where a whole zip file's worth of chunks are scanned.
if balance.ChunkerLRUCacheMax > 0 && len(c.Chunks) > balance.ChunkerLRUCacheMax {
log.Error("Chunks in memory (%d) exceeds LRU cache cap of %d, freeing random chunks")
c.chunkMu.Lock()
defer c.chunkMu.Unlock()
var (
i = 0
limit = len(c.Chunks) - balance.ChunkerLRUCacheMax
)
for coord := range c.Chunks {
if i < limit {
delete(c.Chunks, coord)
}
i++
}
}
return nil, false
}
// LRU cache for chunks from zipfiles: log which chunks were accessed
// this tick, so they can be compared to the tick prior, and then freed
// up after that.
func (c *Chunker) logChunkAccess(p render.Point, chunk *Chunk) {
// Record this point.
c.requestMu.Lock()
if c.chunkRequestsThisTick == nil {
c.chunkRequestsThisTick = map[render.Point]interface{}{}
}
c.chunkRequestsThisTick[p] = nil
c.requestMu.Unlock()
}
// FreeCaches unloads chunks that have not been requested in 2 frames.
//
// Only on chunkers that have zipfiles, old-style levels without zips
// wouldn't be able to restore their chunks otherwise! Returns -1 if
// no Zipfile, otherwise number of chunks freed.
func (c *Chunker) FreeCaches() int {
if c.Zipfile == nil {
return -1
}
var thisTick = shmem.Tick
// Very first tick this chunker has seen?
if c.lastTick == 0 {
c.lastTick = thisTick
}
// A new tick?
if (thisTick-c.lastTick)%4 == 0 {
c.requestMu.Lock()
c.chunkMu.Lock()
defer c.requestMu.Unlock()
defer c.chunkMu.Unlock()
var (
requestsThisTick = c.chunkRequestsThisTick
requestsN2 = c.requestsN2
delete_coords = []render.Point{}
)
// Chunks requested 2 ticks ago but not this tick, put on the chopping
// block to free them later.
c.ctfMu.Lock()
for coord := range requestsN2 {
// Old point not requested recently?
if _, ok := requestsThisTick[coord]; !ok {
c.chunksToFree[coord] = shmem.Tick + balance.CanvasChunkFreeChoppingBlockTicks
}
}
// From the chopping block, see if scheduled chunks to free are ready.
for coord, expireAt := range c.chunksToFree {
if shmem.Tick > expireAt {
delete_coords = append(delete_coords, coord)
}
}
// Free any eligible chunks NOW.
for _, coord := range delete_coords {
delete(c.chunksToFree, coord)
c.FreeChunk(coord)
}
c.ctfMu.Unlock()
// Rotate the cached ticks and clean the slate.
c.requestsN2 = c.requestsN1
c.requestsN1 = requestsThisTick
c.chunkRequestsThisTick = map[render.Point]interface{}{}
c.lastTick = thisTick
return len(delete_coords)
}
return 0
}
// SetChunk writes the chunk into the cache dict and nothing more.
//
// This function should be the singular writer to the chunk cache.
func (c *Chunker) SetChunk(p render.Point, chunk *Chunk) {
c.chunkMu.Lock()
c.Chunks[p] = chunk
c.chunkMu.Unlock()
c.logChunkAccess(p, chunk)
}
// FreeChunk unloads a chunk from active memory for zipfile-backed levels.
//
// Not thread safe: it is assumed the caller has the lock on c.Chunks.
func (c *Chunker) FreeChunk(p render.Point) bool {
if c.Zipfile == nil {
return false
}
// If this chunk has been modified since it was last loaded from ZIP, hang onto it
// in memory until the next save so we don't lose it.
if chunk, ok := c.Chunks[p]; ok {
if chunk.IsModified() {
return false
}
// Don't delete empty chunks, hang on until next zipfile save.
if chunk, ok := c.Chunks[p]; ok && chunk.Len() == 0 {
return false
}
}
delete(c.Chunks, p)
return true
}
// Redraw marks every chunk as dirty and invalidates all their texture caches,
// forcing the drawing to re-generate from scratch.
func (c *Chunker) Redraw() {
for chunk := range c.IterChunksThemselves() {
chunk.SetDirty()
}
}
// Prerender visits every chunk and fetches its texture, in order to pre-load
// the whole drawing for smooth gameplay rather than chunks lazy rendering as
// they enter the screen.
func (c *Chunker) Prerender() {
for chunk := range c.IterChunksThemselves() {
_ = chunk.CachedBitmap(render.Invisible)
}
}
// PrerenderN will pre-render the texture for N number of chunks and then
// yield back to the caller. Returns the number of chunks that still need
// textures rendered; zero when the last chunk has been prerendered.
func (c *Chunker) PrerenderN(n int) (remaining int) {
var (
total int // total no. of chunks available
totalRendered int // no. of chunks with textures
modified int // number modified this call
)
for chunk := range c.IterChunksThemselves() {
total++
if chunk.bitmap != nil {
totalRendered++
continue
}
if modified < n {
_ = chunk.CachedBitmap(render.Invisible)
totalRendered++
modified++
}
}
remaining = total - totalRendered
return
}
// Get a pixel at the given coordinate. Returns the Palette entry for that
// pixel or else returns an error if not found.
func (c *Chunker) Get(p render.Point) (*Swatch, error) {
// Compute the chunk coordinate.
coord := c.ChunkCoordinate(p)
if chunk, ok := c.GetChunk(coord); ok {
return chunk.Get(p)
}
return nil, fmt.Errorf("no chunk %s exists for point %s", coord, p)
}
// Set a pixel at the given coordinate.
func (c *Chunker) Set(p render.Point, sw *Swatch) error {
coord := c.ChunkCoordinate(p)
chunk, ok := c.GetChunk(coord)
if !ok {
chunk = NewChunk()
chunk.Point = coord
chunk.Size = c.Size
c.SetChunk(coord, chunk)
}
return chunk.Set(p, sw)
}
// SetRect sets a rectangle of pixels to a color all at once.
func (c *Chunker) SetRect(r render.Rect, sw *Swatch) error {
var (
xMin = r.X
yMin = r.Y
xMax = r.X + r.W
yMax = r.Y + r.H
)
for x := xMin; x < xMax; x++ {
for y := yMin; y < yMax; y++ {
c.Set(render.NewPoint(x, y), sw)
}
}
return nil
}
// Delete a pixel at the given coordinate.
func (c *Chunker) Delete(p render.Point) error {
coord := c.ChunkCoordinate(p)
if chunk, ok := c.GetChunk(coord); ok {
return chunk.Delete(p)
}
return fmt.Errorf("no chunk %s exists for point %s", coord, p)
}
// DeleteRect deletes a rectangle of pixels between two points.
// The rect is a relative one with a width and height, and the X,Y values are
// an absolute world coordinate.
func (c *Chunker) DeleteRect(r render.Rect) error {
var (
xMin = r.X
yMin = r.Y
xMax = r.X + r.W
yMax = r.Y + r.H
)
for x := xMin; x < xMax; x++ {
for y := yMin; y < yMax; y++ {
c.Delete(render.NewPoint(x, y))
}
}
return nil
}
// ChunkCoordinate computes a chunk coordinate from an absolute coordinate.
func (c *Chunker) ChunkCoordinate(abs render.Point) render.Point {
if c.Size == 0 {
return render.Point{}
}
size := float64(c.Size)
return render.NewPoint(
int(math.Floor(float64(abs.X)/size)),
int(math.Floor(float64(abs.Y)/size)),
)
}
// ChunkMap maps a chunk coordinate to its chunk data.
type ChunkMap map[render.Point]*Chunk
// MarshalJSON to convert the chunk map to JSON. This is needed for writing so
// the JSON encoder knows how to serializes a `map[Point]*Chunk` but the inverse
// is not necessary to implement.
func (c ChunkMap) MarshalJSON() ([]byte, error) {
dict := map[string]*Chunk{}
for point, chunk := range c {
dict[point.String()] = chunk
}
out, err := json.Marshal(dict)
return out, err
}