* pkg/loadscreen implements a global Loading Screen for loading heavy
levels for playing or editing.
* All chunks in a level are pre-rendered to bitmap before gameplay
begins, which reduces stutter as chunks were being lazily rendered on
first appearance before.
* The loading screen can be played with in the developer console:
$ loadscreen.Show()
$ loadscreen.Hide()
Along with ShowWithProgress(), SetProgress(float64) and IsActive()
* Chunker: separate the concerns between Bitmaps an (SDL2) Textures.
* Chunker.Prerender() converts a chunk to a bitmap (a Go image.Image)
and caches it, only re-rendering if marked as dirty.
* Chunker.Texture() will use the pre-cached bitmap if available to
immediately produce the SDL2 texture.
Other miscellaneous changes:
* Added to the Colored Pencil palette: Sandstone
* Added "perlin noise" brush pattern
Note: this commit introduces instability and crashes:
* New `asyncSetup()` functions run on a goroutine, but SDL2 texture
calls must run on the main thread.
* Chunker avoids this by caching bitmaps, not textures.
* Wallpaper though is unstable, sometimes works, sometimes has graphical
glitches, sometimes crashes the game.
* Wallpaper.Load() and the *Texture() functions are where it crashes.
Palette swatches gain a new property: Pattern.
Patterns are grayscale textures that the swatch color will sample
against when drawing pixels to the level, by taking the world coordinate
modulo a value inside the texture.
A few algorithms were tried (Screen, Overlay), this branch lands on one
that tries to cast the color from grayscale which comes out rather dark;
to get a patterned color to look black while still seeing the pattern,
the color needs to be as bright as #777 to get the effect.
* Start the program window maximized with the `-w maximized` CLI option.
* Move the Doodad Palette off the right-side dock of the Editor Scene and
into its own pop-up window: the DoodadDropper.
* Shrink the width of the Color Palette panel and show only the colors in
the buttons. The name of the swatch is available in the mouse-over tooltip.
* Added an "Edit" button to the Color Palette. It opens a Palette Editor
window where you can rename, change colors and attributes of existing colors
OR insert new colors into your palette. (Deleting colors not yet supported).
* level.Chunker gets a Redraw method: invalidates all cached textures of all
chunks forcing the level to redraw itself, possibly with an updated palette.
* New doodads: Switches.
* They come in four varieties: wall switch (background element, with
"ON/OFF" text) and three side-profile switches for the floor, left
or right walls.
* On collision with the player, they flip their state from "OFF" to
"ON" or vice versa. If the player walks away and then collides
again, the switch flips again.
* Can be used to open/close Electric Doors when turned on/off. Their
default state is "off"
* If a switch receives a power signal from another linked switch, it
sets its own state to match. So, two "on/off" switches that are
connected to a door AND to each other will both flip on/off when one
of them flips.
* Update the Level Collision logic to support Decoration, Fire and Water
pixel collisions.
* Previously, ALL pixels in the level were acting as though solid.
* Non-solid pixels don't count for collision detection, but their
attributes (fire and water) are collected and returned.
* Updated the MenuScene to support loading a map file in Play Mode
instead of Edit Mode. Updated the title screen menu to add a button
for playing levels instead of editing them.
* Wrote some documentation.
Since SDL2 is using in-memory bitmaps the same as Canvas engine, the
function names of the render.Engine interface have been cleaned up:
* NewTexture(filename, image) -> StoreTexture(name, image)
Create a new cached texture with a given name.
* NewBitmap(filename) -> LoadTexture(name)
Recall a stored texture with a given name.
* level.Chunk.ToBitmap uses simpler names for the textures instead of
userdir.CacheFilename file-like paths.
* Refactor texture caching in render.Engine:
* New interface method: NewTexture(filename string, image.Image)
* WASM immediately encodes the image to PNG and generates a JavaScript
`Image()` object to load it with a data URI and keep it in memory.
* SDL2 saves the bitmap to disk as it did before.
* WASM: deprecate the sessionStorage for holding image data. Session
storage methods panic if called. The image data is directly kept in
Go memory as a js.Value holding an Image().
* Shared Memory workaround: the level.Chunk.ToBitmap() function is where
chunk textures get cached, but it had no access to the render.Engine
used in the game. The `pkg/shmem` package holds global pointers to
common structures like the CurrentRenderEngine as a work-around.
* Also shmem.Flash() so Doodle can make its d.Flash() function
globally available, any sub-package can now flash text to the screen
regardless of source code location.
* JavaScript API for Doodads now has a global Flash() function
available.
* WASM: Handle window resize so Doodle can recompute its dimensions
instead of scaling/shrinking the view.
* Add RGBA color blending support in WASM build.
* Initial texture caching API for Canvas renderer engine. The WASM build
writes the chunk caches as a "data:image/png" base64 URL on the
browser's sessionStorage, for access to copy into the Canvas.
* Separated the ClickEvent from the MouseEvent (motion) in the WASM
event queue system, to allow clicking and dragging.
* Added the EscapeKey handler, which will abruptly terminate the WASM
application, same as it kills the window in the desktop build.
* Optimization fix: I discovered that if the user clicks and holds over
a single pixel when drawing a level, repeated Set() operations were
firing meaning multiple cache invalidations. Not noticeable on PC but
on WebAssembly it crippled the browser. Now if the cursor isn't moving
it doesn't do anything.
* Refactor the event system in the WASM render engine to serialize the
async JavaScript events into a channel, so that queued events are read
off serially in the main loop similar to SDL. This fixes keyboard
input issues, altho if you type really fast some input keys get lost.
* Add a Red Azulian as a test for mobile enemies.
* Its A.I. has it walk back and forth, changing directions when it
comes up against an obstacle for a few moments.
* It plays walking animations and can trigger collision events with
other Doodads, such as the Electric Door and Trapdoor.
* Move Gravity responsibility to the doodad scripts themselves.
* Call `Self.SetGravity(true)` to opt the Doodad in to gravity.
* The canvas.Loop() adds gravity to any doodad that has it enabled.
* Add some encoding/decoding functions for binary msgpack format for
levels and doodads. Currently it writes msgpack files that can be
decoded and printed by Python (mp2json.py) but it can't re-read from
the binary format. For now, levels will continue to write in JSON
format.
* Add filesystem abstraction functions to the balance/ package to search
multiple paths to find Levels and Doodads, to make way for
system-level doodads.