doodle/pkg/shell.go

423 lines
9.6 KiB
Go
Raw Normal View History

package doodle
import (
"bytes"
"errors"
"fmt"
"strings"
2022-09-24 22:17:25 +00:00
"git.kirsle.net/SketchyMaze/doodle/pkg/balance"
"git.kirsle.net/SketchyMaze/doodle/pkg/keybind"
"git.kirsle.net/SketchyMaze/doodle/pkg/log"
"git.kirsle.net/SketchyMaze/doodle/pkg/modal/loadscreen"
"git.kirsle.net/SketchyMaze/doodle/pkg/physics"
"git.kirsle.net/SketchyMaze/doodle/pkg/shmem"
"git.kirsle.net/go/render"
"git.kirsle.net/go/render/event"
"git.kirsle.net/go/ui"
"github.com/dop251/goja"
)
// Flash a message to the user.
func (d *Doodle) Flash(template string, v ...interface{}) {
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
log.Warn(template, v...)
d.shell.Write(fmt.Sprintf(template, v...))
}
// FlashError flashes an error-colored message to the user.
func (d *Doodle) FlashError(template string, v ...interface{}) {
log.Error(template, v...)
d.shell.WriteColorful(fmt.Sprintf(template, v...), balance.FlashErrorColor)
}
// Prompt the user for a question in the dev console.
func (d *Doodle) Prompt(question string, callback func(string)) {
d.shell.Prompt = question
d.shell.callback = callback
d.shell.Open = true
}
// PromptPre prompts with a pre-filled value.
func (d *Doodle) PromptPre(question string, prefilled string, callback func(string)) {
d.shell.Text = prefilled
d.shell.Prompt = question
d.shell.callback = callback
d.shell.Open = true
}
// FindLikelySupervisor will locate a most likely ui.Supervisor depending on the current Scene,
// if it understands the Scene and knows where it keeps its Supervisor.
func (d *Doodle) FindLikelySupervisor() (*ui.Supervisor, error) {
switch scene := d.Scene.(type) {
case *EditorScene:
return scene.UI.Supervisor, nil
case *PlayScene:
return scene.Supervisor, nil
case *MainScene:
return scene.Supervisor, nil
}
return nil, errors.New("couldn't find a Supervisor")
}
// Shell implements the developer console in-game.
type Shell struct {
parent *Doodle
Open bool
Prompt string
Repl bool
callback func(string) // for prompt answers only
Text string
History []string
Output []string
Flashes []Flash
// Blinky cursor variables.
cursor byte // cursor symbol
cursorFlip uint64 // ticks until cursor flip
cursorRate uint64
// Paging through history variables.
historyPaging bool
historyIndex int
// JavaScript shell interpreter.
js *goja.Runtime
}
// Flash holds a message to flash on screen.
type Flash struct {
Text string
Expires uint64 // tick that it expires
Color render.Color
}
// NewShell initializes the shell helper (the "Shellper").
func NewShell(d *Doodle) Shell {
s := Shell{
parent: d,
History: []string{},
Output: []string{},
Flashes: []Flash{},
Prompt: ">",
cursor: '_',
cursorRate: balance.ShellCursorBlinkRate,
js: goja.New(),
}
// Make the Doodle instance available to the shell.
bindings := map[string]interface{}{
"d": d,
"Execute": s.Execute,
"RGBA": render.RGBA,
"Point": render.NewPoint,
"Vector": physics.NewVector,
"Rect": render.NewRect,
"Tree": func(w ui.Widget) string {
for _, row := range ui.WidgetTree(w) {
d.Flash(row)
}
return ""
},
"loadscreen": map[string]interface{}{
"Show": loadscreen.Show,
"ShowWithProgress": loadscreen.ShowWithProgress,
"Hide": loadscreen.Hide,
"IsActive": loadscreen.IsActive,
"SetProgress": loadscreen.SetProgress,
},
}
for name, v := range bindings {
err := s.js.Set(name, v)
if err != nil {
log.Error("Failed to make `%s` available to JS shell: %s", name, err)
}
}
return s
}
// Close the shell, resetting its internal state.
func (s *Shell) Close() {
log.Debug("Shell: closing shell")
s.Open = false
s.Repl = false
s.Prompt = ">"
s.callback = nil
s.Text = ""
s.historyPaging = false
s.historyIndex = 0
}
// Execute a command in the shell.
func (s *Shell) Execute(input string) {
command := s.Parse(input)
if command.Raw != "" {
s.Output = append(s.Output, s.Prompt+command.Raw)
s.History = append(s.History, command.Raw)
}
// Are we answering a Prompt?
if s.callback != nil {
log.Info("Invoking prompt callback:")
s.callback(command.Raw)
s.Close()
return
}
if command.Command == "clear" {
s.Output = []string{}
} else {
err := command.Run(s.parent)
if err != nil {
s.Write(err.Error())
}
}
// Reset the text buffer in the shell.
if s.Repl {
s.Text = "$ "
} else {
s.Text = ""
}
}
// Write a line of output text to the console.
func (s *Shell) Write(line string) {
s.Output = append(s.Output, line)
s.Flashes = append(s.Flashes, Flash{
Text: line,
Expires: shmem.Tick + balance.FlashTTL,
})
}
// WriteError writes a line of error (red) text to the console.
func (s *Shell) WriteColorful(line string, color render.Color) {
s.Output = append(s.Output, line)
s.Flashes = append(s.Flashes, Flash{
Text: line,
Color: color,
Expires: shmem.Tick + balance.FlashTTL,
})
}
// Parse the command line.
func (s *Shell) Parse(input string) Command {
input = strings.TrimSpace(input)
if len(input) == 0 {
return Command{}
}
var (
inQuote bool
buffer = bytes.NewBuffer([]byte{})
words = []string{}
)
for i := 0; i < len(input); i++ {
char := input[i]
switch char {
case ' ':
if inQuote {
buffer.WriteByte(char)
continue
}
if word := buffer.String(); word != "" {
words = append(words, word)
buffer.Reset()
}
case '"':
if !inQuote {
// An opening quote character.
inQuote = true
} else {
// The closing quote.
inQuote = false
if word := buffer.String(); word != "" {
words = append(words, word)
buffer.Reset()
}
}
default:
buffer.WriteByte(char)
}
}
if remainder := buffer.String(); remainder != "" {
words = append(words, remainder)
}
return Command{
Raw: input,
Command: words[0],
Args: words[1:],
ArgsLiteral: strings.TrimSpace(input[len(words[0]):]),
}
}
// Draw the shell.
func (s *Shell) Draw(d *Doodle, ev *event.State) error {
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
// Compute the line height we can draw.
lineHeight := balance.ShellFontSize + int(balance.ShellPadding)
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
// If the console is open, draw the console.
if s.Open {
if ev.Escape {
s.Close()
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
return nil
} else if keybind.Enter(ev) {
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
s.Execute(s.Text)
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
// Auto-close the console unless in REPL mode.
if !s.Repl {
s.Close()
}
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
return nil
} else if (ev.Up || ev.Down) && len(s.History) > 0 {
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
// Paging through history.
if !s.historyPaging {
s.historyPaging = true
s.historyIndex = len(s.History)
}
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
// Consume the inputs and make convenient variables.
isUp := ev.Up
ev.Down = false
ev.Up = false
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
// Scroll through the input history.
if isUp {
s.historyIndex--
if s.historyIndex < 0 {
s.historyIndex = 0
}
} else {
s.historyIndex++
if s.historyIndex >= len(s.History) {
s.historyIndex = len(s.History) - 1
}
}
Wallpapers and Bounded Levels Implement the Wallpaper system into the levels and the concept of Bounded and Unbounded levels. The first wallpaper image is notepad.png which looks like standard ruled notebook paper. On bounded levels, the top/left edges of the page look as you would expect and the blue lines tile indefinitely in the positive directions. On unbounded levels, you only get the repeating blue lines but not the edge pieces. A wallpaper is just a rectangular image file. The image is divided into four equal quadrants to be the Corner, Top, Left and Repeat textures for the wallpaper. The Repeat texture is ALWAYS used and fills all the empty space behind the drawing. (Doodads draw with blank canvases as before because only levels have wallpapers!) Levels have four options of a "Page Type": - Unbounded (default, infinite space) - NoNegativeSpace (has a top left edge but can grow infinitely) - Bounded (has a top left edge and bounded size) - Bordered (bounded with bordered texture; NOT IMPLEMENTED!) The scrollable viewport of a Canvas will respect the wallpaper and page type settings of a Level loaded into it. That is, if the level has a top left edge (not Unbounded) you can NOT scroll to see negative coordinates below (0,0) -- and if the level has a max dimension set, you can't scroll to see pixels outside those dimensions. The Canvas property NoLimitScroll=true will override the scroll locking and let you see outside the bounds, for debugging. - Default map settings for New Level are now: - Page Type: NoNegativeSpace - Wallpaper: notepad.png (default) - MaxWidth: 2550 (8.5" * 300 ppi) - MaxHeight: 3300 ( 11" * 300 ppi)
2018-10-28 05:22:13 +00:00
s.Text = s.History[s.historyIndex]
}
// Cursor flip?
if shmem.Tick > s.cursorFlip {
s.cursorFlip = shmem.Tick + s.cursorRate
if s.cursor == ' ' {
s.cursor = '_'
} else {
s.cursor = ' '
}
}
// Read a character from the keyboard.
for _, key := range ev.KeysDown(true) {
// Backspace?
if key == `\b` {
if len(s.Text) > 0 {
s.Text = s.Text[:len(s.Text)-1]
}
} else {
s.Text += key
}
// HACK: I wanted to do:
// ev.SetKeyDown(key, false)
// But, ev.KeysDown(shifted=true) returns letter keys
// like 'M' when the key we wanted to unset was 'm',
// or we got '$' when we want to unset '5'... so all
// shifted chars got duplicated 3+ times on key press!
// So, just reset ALL key press states to work around it:
ev.ResetKeyDown()
}
// How tall is the box?
boxHeight := (lineHeight * (balance.ShellHistoryLineCount + 1)) + balance.ShellPadding
// Draw the background color.
d.Engine.DrawBox(
balance.ShellBackgroundColor,
render.Rect{
X: 0,
Y: d.height - boxHeight,
W: d.width,
H: boxHeight,
},
)
// Draw the recent commands.
outputY := d.height - (lineHeight * 2)
for i := 0; i < balance.ShellHistoryLineCount; i++ {
if len(s.Output) > i {
line := s.Output[len(s.Output)-1-i]
d.Engine.DrawText(
render.Text{
FontFilename: balance.ShellFontFilename,
Text: line,
Size: balance.ShellFontSize,
Color: balance.ShellForegroundColor,
},
render.Point{
X: balance.ShellPadding,
Y: outputY,
},
)
}
outputY -= lineHeight
}
// Draw the command prompt.
d.Engine.DrawText(
render.Text{
FontFilename: balance.ShellFontFilename,
Text: s.Prompt + s.Text + string(s.cursor),
Size: balance.ShellFontSize,
Color: balance.ShellPromptColor,
},
render.Point{
X: balance.ShellPadding,
Y: d.height - balance.ShellFontSize - balance.ShellPadding,
},
)
} else if len(s.Flashes) > 0 {
// Otherwise, just draw flashed messages.
valid := false // Did we actually draw any?
outputY := d.height - (lineHeight * 2) - 16
for i := len(s.Flashes); i > 0; i-- {
flash := s.Flashes[i-1]
if shmem.Tick >= flash.Expires {
continue
}
var text = balance.FlashFont(flash.Text)
if !flash.Color.IsZero() {
text.Color = flash.Color
text.Stroke = text.Color.Darken(balance.FlashStrokeDarken)
text.Shadow = text.Color.Darken(balance.FlashShadowDarken)
}
d.Engine.DrawText(
text,
render.Point{
X: balance.ShellPadding + toolbarWidth,
Y: outputY,
},
)
outputY -= lineHeight
valid = true
}
// If we've exhausted all flashes, free up the memory.
if !valid {
s.Flashes = []Flash{}
}
}
return nil
}