237 lines
7.1 KiB
C
237 lines
7.1 KiB
C
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <math.h>
|
||
|
#include "vadpcm.h"
|
||
|
|
||
|
void vencodeframe(FILE *ofile, s16 *inBuffer, s32 *state, s32 ***coefTable, s32 order, s32 npredictors, s32 nsam)
|
||
|
{
|
||
|
s16 ix[16];
|
||
|
s32 prediction[16];
|
||
|
s32 inVector[16];
|
||
|
s32 saveState[16];
|
||
|
s32 optimalp;
|
||
|
s32 scale;
|
||
|
s32 llevel;
|
||
|
s32 ulevel;
|
||
|
s32 i;
|
||
|
s32 j;
|
||
|
s32 k;
|
||
|
s32 ie[16];
|
||
|
s32 nIter;
|
||
|
s32 max;
|
||
|
s32 cV;
|
||
|
s32 maxClip;
|
||
|
u8 header;
|
||
|
u8 c;
|
||
|
f32 e[16];
|
||
|
f32 se;
|
||
|
f32 min;
|
||
|
|
||
|
// We are only given 'nsam' samples; pad with zeroes to 16.
|
||
|
for (i = nsam; i < 16; i++)
|
||
|
{
|
||
|
inBuffer[i] = 0;
|
||
|
}
|
||
|
|
||
|
llevel = -8;
|
||
|
ulevel = -llevel - 1;
|
||
|
|
||
|
// Determine the best-fitting predictor.
|
||
|
min = 1e30;
|
||
|
optimalp = 0;
|
||
|
for (k = 0; k < npredictors; k++)
|
||
|
{
|
||
|
// Copy over the last 'order' samples from the previous output.
|
||
|
for (i = 0; i < order; i++)
|
||
|
{
|
||
|
inVector[i] = state[16 - order + i];
|
||
|
}
|
||
|
|
||
|
// For 8 samples...
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
// Compute a prediction based on 'order' values from the old state,
|
||
|
// plus previous errors in this chunk, as an inner product with the
|
||
|
// coefficient table.
|
||
|
prediction[i] = inner_product(order + i, coefTable[k][i], inVector);
|
||
|
// Record the error in inVector (thus, its first 'order' samples
|
||
|
// will contain actual values, the rest will be error terms), and
|
||
|
// in floating point form in e (for no particularly good reason).
|
||
|
inVector[i + order] = inBuffer[i] - prediction[i];
|
||
|
e[i] = (f32) inVector[i + order];
|
||
|
}
|
||
|
|
||
|
// For the next 8 samples, start with 'order' values from the end of
|
||
|
// the previous 8-sample chunk of inBuffer. (The code is equivalent to
|
||
|
// inVector[i] = inBuffer[8 - order + i].)
|
||
|
for (i = 0; i < order; i++)
|
||
|
{
|
||
|
inVector[i] = prediction[8 - order + i] + inVector[8 + i];
|
||
|
}
|
||
|
|
||
|
// ... and do the same thing as before to get predictions.
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
prediction[8 + i] = inner_product(order + i, coefTable[k][i], inVector);
|
||
|
inVector[i + order] = inBuffer[8 + i] - prediction[8 + i];
|
||
|
e[8 + i] = (f32) inVector[i + order];
|
||
|
}
|
||
|
|
||
|
// Compute the L2 norm of the errors; the lowest norm decides which
|
||
|
// predictor to use.
|
||
|
se = 0.0f;
|
||
|
for (j = 0; j < 16; j++)
|
||
|
{
|
||
|
se += e[j] * e[j];
|
||
|
}
|
||
|
|
||
|
if (se < min)
|
||
|
{
|
||
|
min = se;
|
||
|
optimalp = k;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Do exactly the same thing again, for real.
|
||
|
for (i = 0; i < order; i++)
|
||
|
{
|
||
|
inVector[i] = state[16 - order + i];
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
prediction[i] = inner_product(order + i, coefTable[optimalp][i], inVector);
|
||
|
inVector[i + order] = inBuffer[i] - prediction[i];
|
||
|
e[i] = (f32) inVector[i + order];
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < order; i++)
|
||
|
{
|
||
|
inVector[i] = prediction[8 - order + i] + inVector[8 + i];
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
prediction[8 + i] = inner_product(order + i, coefTable[optimalp][i], inVector);
|
||
|
inVector[i + order] = inBuffer[8 + i] - prediction[8 + i];
|
||
|
e[8 + i] = (f32) inVector[i + order];
|
||
|
}
|
||
|
|
||
|
// Clamp the errors to 16-bit signed ints, and put them in ie.
|
||
|
clamp(16, e, ie, 16);
|
||
|
|
||
|
// Find a value with highest absolute value.
|
||
|
// @bug If this first finds -2^n and later 2^n, it should set 'max' to the
|
||
|
// latter, which needs a higher value for 'scale'.
|
||
|
max = 0;
|
||
|
for (i = 0; i < 16; i++)
|
||
|
{
|
||
|
if (fabs(ie[i]) > fabs(max))
|
||
|
{
|
||
|
max = ie[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute which power of two we need to scale down by in order to make
|
||
|
// all values representable as 4-bit signed integers (i.e. be in [-8, 7]).
|
||
|
// The worst-case 'max' is -2^15, so this will be at most 12.
|
||
|
for (scale = 0; scale <= 12; scale++)
|
||
|
{
|
||
|
if (max <= ulevel && max >= llevel)
|
||
|
{
|
||
|
goto out;
|
||
|
}
|
||
|
max /= 2;
|
||
|
}
|
||
|
out:;
|
||
|
|
||
|
for (i = 0; i < 16; i++)
|
||
|
{
|
||
|
saveState[i] = state[i];
|
||
|
}
|
||
|
|
||
|
// Try with the computed scale, but if it turns out we don't fit in 4 bits
|
||
|
// (if some |cV| >= 2), use scale + 1 instead (i.e. downscaling by another
|
||
|
// factor of 2).
|
||
|
scale--;
|
||
|
nIter = 0;
|
||
|
do
|
||
|
{
|
||
|
nIter++;
|
||
|
maxClip = 0;
|
||
|
scale++;
|
||
|
if (scale > 12)
|
||
|
{
|
||
|
scale = 12;
|
||
|
}
|
||
|
|
||
|
// Copy over the last 'order' samples from the previous output.
|
||
|
for (i = 0; i < order; i++)
|
||
|
{
|
||
|
inVector[i] = saveState[16 - order + i];
|
||
|
}
|
||
|
|
||
|
// For 8 samples...
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
// Compute a prediction based on 'order' values from the old state,
|
||
|
// plus previous *quantized* errors in this chunk (because that's
|
||
|
// all the decoder will have available).
|
||
|
prediction[i] = inner_product(order + i, coefTable[optimalp][i], inVector);
|
||
|
|
||
|
// Compute the error, and divide it by 2^scale, rounding to the
|
||
|
// nearest integer. This should ideally result in a 4-bit integer.
|
||
|
se = (f32) inBuffer[i] - (f32) prediction[i];
|
||
|
ix[i] = qsample(se, 1 << scale);
|
||
|
|
||
|
// Clamp the error to a 4-bit signed integer, and record what delta
|
||
|
// was needed for that.
|
||
|
cV = (s16) clip(ix[i], llevel, ulevel) - ix[i];
|
||
|
if (maxClip < abs(cV))
|
||
|
{
|
||
|
maxClip = abs(cV);
|
||
|
}
|
||
|
ix[i] += cV;
|
||
|
|
||
|
// Record the quantized error in inVector for later predictions,
|
||
|
// and the quantized (decoded) output in state (for use in the next
|
||
|
// batch of 8 samples).
|
||
|
inVector[i + order] = ix[i] * (1 << scale);
|
||
|
state[i] = prediction[i] + inVector[i + order];
|
||
|
}
|
||
|
|
||
|
// Copy over the last 'order' decoded samples from the above chunk.
|
||
|
for (i = 0; i < order; i++)
|
||
|
{
|
||
|
inVector[i] = state[8 - order + i];
|
||
|
}
|
||
|
|
||
|
// ... and do the same thing as before.
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
prediction[8 + i] = inner_product(order + i, coefTable[optimalp][i], inVector);
|
||
|
se = (f32) inBuffer[8 + i] - (f32) prediction[8 + i];
|
||
|
ix[8 + i] = qsample(se, 1 << scale);
|
||
|
cV = (s16) clip(ix[8 + i], llevel, ulevel) - ix[8 + i];
|
||
|
if (maxClip < abs(cV))
|
||
|
{
|
||
|
maxClip = abs(cV);
|
||
|
}
|
||
|
ix[8 + i] += cV;
|
||
|
inVector[i + order] = ix[8 + i] * (1 << scale);
|
||
|
state[8 + i] = prediction[8 + i] + inVector[i + order];
|
||
|
}
|
||
|
}
|
||
|
while (maxClip >= 2 && nIter < 2);
|
||
|
|
||
|
// The scale, the predictor index, and the 16 computed outputs are now all
|
||
|
// 4-bit numbers. Write them out as 1 + 8 bytes.
|
||
|
header = (scale << 4) | (optimalp & 0xf);
|
||
|
fwrite(&header, 1, 1, ofile);
|
||
|
for (i = 0; i < 16; i += 2)
|
||
|
{
|
||
|
c = (ix[i] << 4) | (ix[i + 1] & 0xf);
|
||
|
fwrite(&c, 1, 1, ofile);
|
||
|
}
|
||
|
}
|