BareRTC is a simple WebRTC-based chat room application. It is especially designed to be plugged into any existing website, with or without a pre-existing base of users.
It is very much in the style of the old-school Flash based webcam chat rooms of the early 2000's: a multi-user chat room with DMs and _some_ users may broadcast video and others may watch multiple video feeds in an asynchronous manner. I thought that this should be such an obvious free and open source app that should exist, but it did not and so I had to write it myself.
* Specify multiple Public Channels that all users have access to.
* Users can open direct message (one-on-one) conversations with each other.
* No long-term server side state: messages are pushed out as they come in.
* Users may broadcast their webcam which shows a camera icon by their name in the Who List. Users may click on those icons to open multiple camera feeds of other users they are interested in.
* Mobile friendly: works best on iPads and above but adapts to smaller screens well.
* WebRTC means peer-to-peer video streaming so cheap on hosting costs!
* Simple integration with your existing userbase via signed JWT tokens.
* **Title** goes in the title bar of the chat page.
* **Branding** is the title shown in the corner of the page. HTML is permitted here! You may write an `<img>` tag to embed an image or use custom markup to color and prettify your logo.
* **WebsiteURL** is the base URL of your actual website which is used in a couple of places:
* The About page will link to your website.
* If using [JWT authentication](#authentication), avatar and profile URLs may be relative (beginning with a "/") and will append to your website URL to safe space on the JWT token size!
* **UseXForwardedFor**: set it to true and (for logging) the user's remote IP will use the X-Real-IP header or the first address in X-Forwarded-For. Set this if you run the app behind a proxy like nginx if you want IPs not to be all localhost.
* **CORSHosts**: your website's domain names that will be allowed to access [JSON APIs](#JSON APIs), like `/api/statistics`.
* **PermitNSFW**: for user webcam streams, expressly permit "NSFW" content if the user opts in to mark their feed as such. Setting this will enable pop-up modals regarding NSFW video and give broadcasters an opt-in button, which will warn other users before they click in to watch.
* **JWT**: settings for JWT [Authentication](#authentication).
* Enabled (bool): activate the JWT token authentication feature.
* Strict (bool): if true, **only** valid signed JWT tokens may log in. If false, users with no/invalid token can enter their own username without authentication.
* SecretKey (string): the JWT signing secret shared with your back-end app.
* **PublicChannels**: list the public channels and their configuration. The default channel will be the first one listed.
* ID (string): an arbitrary 'username' for the chat channel, like "lobby".
* Name (string): the user friendly name for the channel, like "Off Topic"
* Icon (string, optional): CSS class names for FontAwesome icon for the channel, like "fa fa-message"
* WelcomeMessages ([]string, optional): messages that are delivered by ChatServer to the user when they connect to the server. Useful to give an introduction to each channel, list its rules, etc.
BareRTC supports custom (user-defined) authentication with your app in the form of JSON Web Tokens (JWTs). JWTs will allow your existing app to handle authentication for users by signing a token that vouches for them, and the BareRTC app will trust your signed token.
The workflow is as follows:
1. Your existing app already has the user logged-in and you trust who they are. To get them into the chat room, your server signs a JWT token using a secret key that both it and BareRTC knows.
2. Your server redirects the user to your BareRTC website sending the JWT token as a `jwt` parameter, either in the query string (GET) or POST request.
* e.g. you send them to `https://chat.example.com/?jwt=TOKEN`
* If the JWT token is too long to fit in a query string, you may create a `<form>` with `method="POST"` that posts the `jwt` as a form field.
3. The BareRTC server will parse and validate the token using the shared Secret Key that only it and your back-end website knows.
There are JWT libraries available for most programming languages.
Configure a shared secret key (random text string) in both the BareRTC settings and in your app, and your app will sign a JWT including claims that look like the following (using signing method HS264):
**Notice:** your picture and profile URL may be relative URIs beginning with a forward slash as seen above; BareRTC will append them to the end of your WebsiteURL and you can save space on your JWT token size this way. Full URLs beginning with `https?://` will also be accepted and used as-is.
You can enable JWT authentication in a mixed mode: users presenting a valid token will get a profile picture and operator status (if applicable) and users who don't have a JWT token are asked to pick their own username and don't get any special flair.
In strict mode (default/recommended), only a valid JWT token can sign a user into the chat room. Set `[JWT]/Strict=false` in your settings.toml to disable strict JWT verification and allow "guest users" to log in. Note that this can have the same caveats as [running without authentication](#running-without-authentication) and is not a recommended use case.
The default app doesn't need any authentication at all: users are asked to pick their own username when joining the chat. The server may re-assign them a new name if they enter one that's already taken.
It is not recommended to run in this mode as admin controls to moderate the server are disabled.
### Known Bugs Running Without Authentication
This app is not designed to run without JWT authentication for users enabled. In the app's default state, users can pick their own username when they connect and the server will adjust their name to resolve duplicates. Direct message threads are based on the username so if a user logs off, somebody else could log in with the same username and "resume" direct message threads that others were involved in.
Note that they would not get past history of those DMs as this server only pushes _new_ messages to users after they connect.
If you authenticate an Op user via JWT they can enter IRC-style chat commands to moderate the server. Current commands include:
*`/kick <username>` to disconnect a user's chat session.
*`/nsfw <username>` to tag a user's video feed as NSFW (if your settings.toml has PermitNSFW enabled).
# JSON APIs
For better integration with your website, the chat server exposes some data via JSON APIs ready for cross-origin ajax requests. In your settings.toml set the `CORSHosts` to your list of website domains, such as "https://www.example.com", "http://localhost:8080" or so on.
Current API endpoints include:
*`GET /api/statistics`
Returns basic info about the count and usernames of connected chatters:
This app uses WebSockets and WebRTC at the very simplest levels, without using a framework like `Socket.io`. Here is a tour of the codebase with the more interesting modules listed first.
## Backend files
*`cmd/BareRTC/main.go`: the entry point for the Go back-end application (parses command-line flags and starts the web server)
*`pkg/` contains the Go source code for the server side (the application).
*`config/` handles the settings.toml config file for the app.
*`jwt/` handles the JWT authentication logic
*`log/` is an internal logger library - not very interesting
*`util/` houses some miscellaneous utility functions, such as generating random strings or getting the user's IP address (w/ X-Forwarded-For support, etc.)
*`pkg/server.go` sets up the Go HTTP server and all the endpoint routes (e.g.: the /about page, static files, the WebSockets endpoint)
*`pkg/websocket.go` handles the WebSockets endpoint which drives 99% of the chat app (all the login, text chat, who list portions - not webcams). Some related files to this include:
*`pkg/messages.go` is where I define the JSON message schema for the WebSockets protocol. Client and server messages marshal into the Message struct.
*`pkg/handlers.go` is where I write "high level" chat event handlers (OnLogin, OnMessage, etc.) - the WebSocket read loop parses their message and then nicely calls my event handler based on action.
*`pkg/commands.go` handles commands like /kick from moderators.
*`pkg/api.go` handles the JSON API endpoints from the web server.
*`pkg/pages.go` handles the index (w/ jwt parsing) and about pages.
## Frontend files
The `web/` folder holds front-end files and templates used by the Go app.
*`web/templates` holds Go html/template sources that are rendered server-side.
*`chat.html` is the template for the main chat page (index route, `/`).
*`about.html` is the template for the `/about` page.
*`web/static` holds the static files (scripts, stylesheets, images) for the site.
*`js/BareRTC.js` does the whole front-end Vue.js app for BareRTC. The portions of the code that handle the WebSockets and WebRTC features are marked off with comment banners so you can scroll until you find them.
*`js/sounds.js` handles the sound effects for the chat room.
*`css/chat.css` has custom CSS for the chat room UI (mainly a lot of CSS Grid stuff for the full-screen layout).
Other front-end files are all vendored libraries or frameworks used by this app:
* [Bulma](https://bulma.io) CSS framework
* [Font Awesome](https://fontawesome.com) for icons.
You can run the BareRTC app itself using any service supervisor you like. I use [Supervisor](http://supervisord.org/introduction.html) and you can configure BareRTC like so: