doodle/pkg/level/chunker.go
Noah Petherbridge 450c6b3bb2 Spit and polish
* On the failure (but still success) dialog on Survival Mode levels
  (e.g. Azulian Tag): make the default be to retry the level but
  show a "pity" Next Level button below, as the level is marked as
  completed (silver score) and the next one is unlocked.
2022-05-07 17:42:38 -07:00

616 lines
16 KiB
Go

package level
import (
"archive/zip"
"encoding/json"
"fmt"
"math"
"sync"
"git.kirsle.net/apps/doodle/pkg/balance"
"git.kirsle.net/apps/doodle/pkg/log"
"git.kirsle.net/apps/doodle/pkg/shmem"
"git.kirsle.net/go/render"
)
// Chunker is the data structure that manages the chunks of a level, and
// provides the API to interact with the pixels using their absolute coordinates
// while abstracting away the underlying details.
type Chunker struct {
// Layer is optional for the caller, levels use only 0 and
// doodads use them for frames. When chunks are exported to
// zipfile the Layer keeps them from overlapping.
Layer int `json:"-"` // internal use only
Size int `json:"size"`
// A Zipfile reference for new-style levels and doodads which
// keep their chunks in external parts of a zip file.
Zipfile *zip.Reader `json:"-"`
// Chunks, oh boy.
// The v1 drawing format had all the chunks in the JSON file.
// New drawings write them to zips. Legacy drawings can be converted
// simply by loading and resaving: their Chunks loads from JSON and
// is committed to zipfile on save. This makes Chunks also a good
// cache even when we have a zipfile to fall back on.
Chunks ChunkMap `json:"chunks"`
chunkMu sync.RWMutex
// If we have a zipfile, only keep chunks warm in memory if they
// are actively wanted by the game.
lastTick uint64 // NOTE: tracks from shmem.Tick
chunkRequestsThisTick map[render.Point]interface{}
requestsN1 map[render.Point]interface{} // chunks accessed last tick
requestsN2 map[render.Point]interface{} // 2 ticks ago (to free soon)
chunksToFree map[render.Point]uint64 // chopping block (free after X ticks)
ctfMu sync.Mutex // lock for chunksToFree
requestMu sync.Mutex
// The palette reference from first call to Inflate()
pal *Palette
}
// NewChunker creates a new chunk manager with a given chunk size.
func NewChunker(size int) *Chunker {
return &Chunker{
Size: size,
Chunks: ChunkMap{},
chunkRequestsThisTick: map[render.Point]interface{}{},
requestsN1: map[render.Point]interface{}{},
requestsN2: map[render.Point]interface{}{},
chunksToFree: map[render.Point]uint64{},
}
}
// Inflate iterates over the pixels in the (loaded) chunks and expands any
// Sparse Swatches (which have only their palette index, from the file format
// on disk) to connect references to the swatches in the palette.
func (c *Chunker) Inflate(pal *Palette) error {
c.pal = pal
c.chunkMu.RLock()
defer c.chunkMu.RUnlock()
for coord, chunk := range c.Chunks {
chunk.Point = coord
chunk.Size = c.Size
chunk.Inflate(pal)
}
return nil
}
// IterViewport returns a channel to iterate every point that exists within
// the viewport rect.
func (c *Chunker) IterViewport(viewport render.Rect) <-chan Pixel {
pipe := make(chan Pixel)
go func() {
// Get the chunk box coordinates.
var (
topLeft = c.ChunkCoordinate(render.NewPoint(viewport.X, viewport.Y))
bottomRight = c.ChunkCoordinate(render.Point{
X: viewport.X + viewport.W,
Y: viewport.Y + viewport.H,
})
)
for cx := topLeft.X; cx <= bottomRight.X; cx++ {
for cy := topLeft.Y; cy <= bottomRight.Y; cy++ {
if chunk, ok := c.GetChunk(render.NewPoint(cx, cy)); ok {
for px := range chunk.Iter() {
// Verify this pixel is also in range.
if px.Point().Inside(viewport) {
pipe <- px
}
}
}
}
}
close(pipe)
}()
return pipe
}
// IterChunks returns a channel to iterate over all chunks in the drawing.
func (c *Chunker) IterChunks() <-chan render.Point {
var (
pipe = make(chan render.Point)
sent = map[render.Point]interface{}{}
)
go func() {
c.chunkMu.RLock()
// Send the chunk coords we have in working memory.
// v1 levels: had all their chunks there in their JSON data
// v2 levels: chunks are in zipfile, cached ones are here
for point := range c.Chunks {
sent[point] = nil
pipe <- point
}
c.chunkMu.RUnlock()
// If we have a zipfile, send any remaining chunks that are
// in colder storage.
if c.Zipfile != nil {
for _, point := range ChunksInZipfile(c.Zipfile, c.Layer) {
if _, ok := sent[point]; ok {
continue // Already sent from active memory
}
pipe <- point
}
}
close(pipe)
}()
return pipe
}
/*
IterChunksThemselves iterates all chunks in the drawing rather than coords.
Note: this will mark every chunk as "touched" this frame, so in a zipfile
level will load ALL chunks into memory.
*/
func (c *Chunker) IterChunksThemselves() <-chan *Chunk {
pipe := make(chan *Chunk)
go func() {
for coord := range c.IterChunks() {
if chunk, ok := c.GetChunk(coord); ok {
pipe <- chunk
}
}
close(pipe)
}()
return pipe
}
// IterCachedChunks iterates ONLY over the chunks currently cached in memory,
// e.g. so they can be torn down without loading extra chunks by looping normally.
func (c *Chunker) IterCachedChunks() <-chan *Chunk {
pipe := make(chan *Chunk)
go func() {
c.chunkMu.RLock()
defer c.chunkMu.RUnlock()
for _, chunk := range c.Chunks {
pipe <- chunk
}
close(pipe)
}()
return pipe
}
// IterViewportChunks returns a channel to iterate over the Chunk objects that
// appear within the viewport rect, instead of the pixels in each chunk.
func (c *Chunker) IterViewportChunks(viewport render.Rect) <-chan render.Point {
pipe := make(chan render.Point)
go func() {
sent := make(map[render.Point]interface{})
for x := viewport.X; x < viewport.W; x += (c.Size / 4) {
for y := viewport.Y; y < viewport.H; y += (c.Size / 4) {
// Constrain this chunksize step to a point within the bounds
// of the viewport. This can yield partial chunks on the edges
// of the viewport.
point := render.NewPoint(x, y)
if point.X < viewport.X {
point.X = viewport.X
} else if point.X > viewport.X+viewport.W {
point.X = viewport.X + viewport.W
}
if point.Y < viewport.Y {
point.Y = viewport.Y
} else if point.Y > viewport.Y+viewport.H {
point.Y = viewport.Y + viewport.H
}
// Translate to a chunk coordinate, dedupe and send it.
coord := c.ChunkCoordinate(render.NewPoint(x, y))
if _, ok := sent[coord]; ok {
continue
}
sent[coord] = nil
if _, ok := c.GetChunk(coord); ok {
pipe <- coord
}
}
}
close(pipe)
}()
return pipe
}
// IterPixels returns a channel to iterate over every pixel in the entire
// chunker.
func (c *Chunker) IterPixels() <-chan Pixel {
pipe := make(chan Pixel)
go func() {
for chunk := range c.IterChunksThemselves() {
for px := range chunk.Iter() {
pipe <- px
}
}
close(pipe)
}()
return pipe
}
// WorldSize returns the bounding coordinates that the Chunker has chunks to
// manage: the lowest pixels from the lowest chunks to the highest pixels of
// the highest chunks.
func (c *Chunker) WorldSize() render.Rect {
chunkLowest, chunkHighest := c.Bounds()
return render.Rect{
X: chunkLowest.X * c.Size,
Y: chunkLowest.Y * c.Size,
W: (chunkHighest.X * c.Size) + (c.Size - 1),
H: (chunkHighest.Y * c.Size) + (c.Size - 1),
}
}
// WorldSizePositive returns the WorldSize anchored to 0,0 with only positive
// coordinates.
func (c *Chunker) WorldSizePositive() render.Rect {
S := c.WorldSize()
return render.Rect{
X: 0,
Y: 0,
W: int(math.Abs(float64(S.X))) + S.W,
H: int(math.Abs(float64(S.Y))) + S.H,
}
}
// Bounds returns the boundary points of the lowest and highest chunk which
// have any data in them.
func (c *Chunker) Bounds() (low, high render.Point) {
for coord := range c.IterChunks() {
if coord.X < low.X {
low.X = coord.X
}
if coord.Y < low.Y {
low.Y = coord.Y
}
if coord.X > high.X {
high.X = coord.X
}
if coord.Y > high.Y {
high.Y = coord.Y
}
}
return low, high
}
/*
GetChunk gets a chunk at a certain position. Returns false if not found.
This should be the centralized function to request a Chunk from the Chunker
(or IterChunksThemselves). On old-style levels all of the chunks were just
in memory as part of the JSON struct, in Zip files we can load/unload them
at will from external files.
*/
func (c *Chunker) GetChunk(p render.Point) (*Chunk, bool) {
// It's currently cached in memory?
c.chunkMu.RLock()
chunk, ok := c.Chunks[p]
c.chunkMu.RUnlock()
// Was it on the chopping block for garbage collection?
c.ctfMu.Lock()
delete(c.chunksToFree, p)
c.ctfMu.Unlock()
if ok {
// An empty chunk? We hang onto these until save time to commit
// the empty chunk to ZIP.
if chunk.Len() == 0 {
return nil, false
}
c.logChunkAccess(p, chunk) // for the LRU cache
return chunk, ok
}
// Hit the zipfile for it.
if c.Zipfile != nil {
if chunk, err := ChunkFromZipfile(c.Zipfile, c.Layer, p); err == nil {
// log.Debug("GetChunk(%s) cache miss, read from zip", p)
c.SetChunk(p, chunk) // cache it
c.logChunkAccess(p, chunk) // for the LRU cache
if c.pal != nil {
chunk.Point = p
chunk.Size = c.Size
chunk.Inflate(c.pal)
}
return chunk, true
}
}
// Is our chunk cache getting too full? e.g. on full level
// sweeps where a whole zip file's worth of chunks are scanned.
if balance.ChunkerLRUCacheMax > 0 && len(c.Chunks) > balance.ChunkerLRUCacheMax {
log.Error("Chunks in memory (%d) exceeds LRU cache cap of %d, freeing random chunks")
c.chunkMu.Lock()
defer c.chunkMu.Unlock()
var (
i = 0
limit = len(c.Chunks) - balance.ChunkerLRUCacheMax
)
for coord := range c.Chunks {
if i < limit {
delete(c.Chunks, coord)
}
i++
}
}
return nil, false
}
// LRU cache for chunks from zipfiles: log which chunks were accessed
// this tick, so they can be compared to the tick prior, and then freed
// up after that.
func (c *Chunker) logChunkAccess(p render.Point, chunk *Chunk) {
// Record this point.
c.requestMu.Lock()
if c.chunkRequestsThisTick == nil {
c.chunkRequestsThisTick = map[render.Point]interface{}{}
}
c.chunkRequestsThisTick[p] = nil
c.requestMu.Unlock()
}
// FreeCaches unloads chunks that have not been requested in 2 frames.
//
// Only on chunkers that have zipfiles, old-style levels without zips
// wouldn't be able to restore their chunks otherwise! Returns -1 if
// no Zipfile, otherwise number of chunks freed.
func (c *Chunker) FreeCaches() int {
if c.Zipfile == nil {
return -1
}
var thisTick = shmem.Tick
// Very first tick this chunker has seen?
if c.lastTick == 0 {
c.lastTick = thisTick
}
// A new tick?
if (thisTick-c.lastTick)%4 == 0 {
c.requestMu.Lock()
c.chunkMu.Lock()
defer c.requestMu.Unlock()
defer c.chunkMu.Unlock()
var (
requestsThisTick = c.chunkRequestsThisTick
requestsN2 = c.requestsN2
delete_coords = []render.Point{}
)
// Chunks requested 2 ticks ago but not this tick, put on the chopping
// block to free them later.
c.ctfMu.Lock()
for coord := range requestsN2 {
// Old point not requested recently?
if _, ok := requestsThisTick[coord]; !ok {
c.chunksToFree[coord] = shmem.Tick + balance.CanvasChunkFreeChoppingBlockTicks
}
}
// From the chopping block, see if scheduled chunks to free are ready.
for coord, expireAt := range c.chunksToFree {
if shmem.Tick > expireAt {
delete_coords = append(delete_coords, coord)
}
}
// Free any eligible chunks NOW.
for _, coord := range delete_coords {
delete(c.chunksToFree, coord)
c.FreeChunk(coord)
}
c.ctfMu.Unlock()
// Rotate the cached ticks and clean the slate.
c.requestsN2 = c.requestsN1
c.requestsN1 = requestsThisTick
c.chunkRequestsThisTick = map[render.Point]interface{}{}
c.lastTick = thisTick
return len(delete_coords)
}
return 0
}
// SetChunk writes the chunk into the cache dict and nothing more.
//
// This function should be the singular writer to the chunk cache.
func (c *Chunker) SetChunk(p render.Point, chunk *Chunk) {
c.chunkMu.Lock()
c.Chunks[p] = chunk
c.chunkMu.Unlock()
c.logChunkAccess(p, chunk)
}
// FreeChunk unloads a chunk from active memory for zipfile-backed levels.
//
// Not thread safe: it is assumed the caller has the lock on c.Chunks.
func (c *Chunker) FreeChunk(p render.Point) bool {
if c.Zipfile == nil {
return false
}
// If this chunk has been modified since it was last loaded from ZIP, hang onto it
// in memory until the next save so we don't lose it.
if chunk, ok := c.Chunks[p]; ok {
if chunk.IsModified() {
return false
}
// Don't delete empty chunks, hang on until next zipfile save.
if chunk, ok := c.Chunks[p]; ok && chunk.Len() == 0 {
return false
}
}
delete(c.Chunks, p)
return true
}
// Redraw marks every chunk as dirty and invalidates all their texture caches,
// forcing the drawing to re-generate from scratch.
func (c *Chunker) Redraw() {
for chunk := range c.IterChunksThemselves() {
chunk.SetDirty()
}
}
// Prerender visits every chunk and fetches its texture, in order to pre-load
// the whole drawing for smooth gameplay rather than chunks lazy rendering as
// they enter the screen.
func (c *Chunker) Prerender() {
for chunk := range c.IterChunksThemselves() {
_ = chunk.CachedBitmap(render.Invisible)
}
}
// PrerenderN will pre-render the texture for N number of chunks and then
// yield back to the caller. Returns the number of chunks that still need
// textures rendered; zero when the last chunk has been prerendered.
func (c *Chunker) PrerenderN(n int) (remaining int) {
var (
total int // total no. of chunks available
totalRendered int // no. of chunks with textures
modified int // number modified this call
)
for chunk := range c.IterChunksThemselves() {
total++
if chunk.bitmap != nil {
totalRendered++
continue
}
if modified < n {
_ = chunk.CachedBitmap(render.Invisible)
totalRendered++
modified++
}
}
remaining = total - totalRendered
return
}
// Get a pixel at the given coordinate. Returns the Palette entry for that
// pixel or else returns an error if not found.
func (c *Chunker) Get(p render.Point) (*Swatch, error) {
// Compute the chunk coordinate.
coord := c.ChunkCoordinate(p)
if chunk, ok := c.GetChunk(coord); ok {
return chunk.Get(p)
}
return nil, fmt.Errorf("no chunk %s exists for point %s", coord, p)
}
// Set a pixel at the given coordinate.
func (c *Chunker) Set(p render.Point, sw *Swatch) error {
coord := c.ChunkCoordinate(p)
chunk, ok := c.GetChunk(coord)
if !ok {
chunk = NewChunk()
chunk.Point = coord
chunk.Size = c.Size
c.SetChunk(coord, chunk)
}
return chunk.Set(p, sw)
}
// SetRect sets a rectangle of pixels to a color all at once.
func (c *Chunker) SetRect(r render.Rect, sw *Swatch) error {
var (
xMin = r.X
yMin = r.Y
xMax = r.X + r.W
yMax = r.Y + r.H
)
for x := xMin; x < xMax; x++ {
for y := yMin; y < yMax; y++ {
c.Set(render.NewPoint(x, y), sw)
}
}
return nil
}
// Delete a pixel at the given coordinate.
func (c *Chunker) Delete(p render.Point) error {
coord := c.ChunkCoordinate(p)
if chunk, ok := c.GetChunk(coord); ok {
return chunk.Delete(p)
}
return fmt.Errorf("no chunk %s exists for point %s", coord, p)
}
// DeleteRect deletes a rectangle of pixels between two points.
// The rect is a relative one with a width and height, and the X,Y values are
// an absolute world coordinate.
func (c *Chunker) DeleteRect(r render.Rect) error {
var (
xMin = r.X
yMin = r.Y
xMax = r.X + r.W
yMax = r.Y + r.H
)
for x := xMin; x < xMax; x++ {
for y := yMin; y < yMax; y++ {
c.Delete(render.NewPoint(x, y))
}
}
return nil
}
// ChunkCoordinate computes a chunk coordinate from an absolute coordinate.
func (c *Chunker) ChunkCoordinate(abs render.Point) render.Point {
if c.Size == 0 {
return render.Point{}
}
size := float64(c.Size)
return render.NewPoint(
int(math.Floor(float64(abs.X)/size)),
int(math.Floor(float64(abs.Y)/size)),
)
}
// ChunkMap maps a chunk coordinate to its chunk data.
type ChunkMap map[render.Point]*Chunk
// MarshalJSON to convert the chunk map to JSON. This is needed for writing so
// the JSON encoder knows how to serializes a `map[Point]*Chunk` but the inverse
// is not necessary to implement.
func (c ChunkMap) MarshalJSON() ([]byte, error) {
dict := map[string]*Chunk{}
for point, chunk := range c {
dict[point.String()] = chunk
}
out, err := json.Marshal(dict)
return out, err
}