doodle/level/json.go
Noah Petherbridge 3c185528f9 Implement Chunk System for Pixel Data
Starts the implementation of the chunk-based pixel storage system for
levels and drawings.

Previously the levels had a Pixels structure which was just an array of
X,Y and palette index triplets. The new chunk system divides the map up
into square chunks, and lets each chunk manage its own memory layout.

The "MapAccessor" layout is implemented first which is a map of X,Y
coordinates to their Swatches (pointer to an index of the palette). When
serialized the MapAccessor maps the "X,Y": "index" similarly to the old
Pixels array.

The object hierarchy for the chunk system is like:

* Chunker: the manager of the chunks who keeps track of the ChunkSize
  and a map of "chunk coordinates" to the chunk in charge of it.
  * Chunk: a part of the drawing ChunkSize length square. A chunk has a
    Type (of how it stores its data, 0 being a map[Point]Swatch and 1
    being a [][]Swatch 2D array), and the chunk has an Accessor which
    implements the underlying type.
    * Accessor: an interface for a Chunk to provide access to its
      pixels.
      * MapAccessor: a "sparse map" of coordinates to their Swatches.
      * GridAccessor: TBD, will be a "dense" 2D grid of Swatches.

The JSON files are loaded in two passes:

1. The chunks only load their swatch indexes from disk.
2. With the palette also loaded, the chunks are "inflated" and linked
   to their swatch pointers.

Misc changes:

* The `level.Canvas` UI widget switches from the old Grid data type to
  being able to directly use a `level.Chunker`
* The Chunker is a shared data type between the on-disk level format and
  the actual renderer (level.Canvas), so saving the level is easy
  because you can just pull the Chunker out from the canvas.
* ChunkSize is stored inside the level file and the default value is at
  balance/numbers.go: 1000
2018-09-23 15:42:05 -07:00

65 lines
1.4 KiB
Go

package level
import (
"bytes"
"encoding/json"
"fmt"
"os"
)
// ToJSON serializes the level as JSON.
func (m *Level) ToJSON() ([]byte, error) {
out := bytes.NewBuffer([]byte{})
encoder := json.NewEncoder(out)
encoder.SetIndent("", "\t")
err := encoder.Encode(m)
return out.Bytes(), err
}
// WriteJSON writes a level to JSON on disk.
func (m *Level) WriteJSON(filename string) error {
fh, err := os.Create(filename)
if err != nil {
return fmt.Errorf("Level.WriteJSON(%s): failed to create file: %s", filename, err)
}
defer fh.Close()
_ = fh
return nil
}
// LoadJSON loads a map from JSON file.
func LoadJSON(filename string) (*Level, error) {
fh, err := os.Open(filename)
if err != nil {
return nil, err
}
defer fh.Close()
// Decode the JSON file from disk.
m := New()
decoder := json.NewDecoder(fh)
err = decoder.Decode(&m)
if err != nil {
return m, fmt.Errorf("level.LoadJSON: JSON decode error: %s", err)
}
// Inflate the chunk metadata to map the pixels to their palette indexes.
m.Chunker.Inflate(m.Palette)
// Inflate the private instance values.
m.Palette.Inflate()
for _, px := range m.Pixels {
if int(px.PaletteIndex) > len(m.Palette.Swatches) {
return nil, fmt.Errorf(
"pixel %s references palette index %d but there are only %d swatches in the palette",
px, px.PaletteIndex, len(m.Palette.Swatches),
)
}
px.Palette = m.Palette
px.Swatch = m.Palette.Swatches[px.PaletteIndex]
}
return m, err
}