Add the JSON format for embedding Actors (Doodad instances) inside of a
Level. I made a test map that manually inserted a couple of actors.
Actors are given to the Canvas responsible for the Level via the
function `InstallActors()`. So it means you'll call LoadLevel and then
InstallActors to hook everything up.
The Canvas creates sub-Canvas widgets from each Actor.
After drawing the main level geometry from the Canvas.Chunker, it calls
the drawActors() function which does the same but for Actors.
Levels keep a global map of all Actors that exist. For any Actors that
are visible within the Viewport, their sub-Canvas widgets are presented
appropriately on top of the parent Canvas. In case their sub-Canvas
overlaps the parent's boundaries, their sub-Canvas is resized and moved
appropriately.
- Allow the MainWindow to be resized at run time, and the UI
recalculates its sizing and position.
- Made the in-game Shell properties editable via environment variables.
The kirsle.env file sets a blue and pink color scheme.
- Begin the ground work for Levels and Doodads to embed files inside
their data via the level.FileSystem type.
- UI: Labels can now contain line break characters. It will
appropriately render multiple lines of render.Text and take into
account the proper BoxSize to contain them all.
- Add environment variable DOODLE_DEBUG_ALL=true that will turn on ALL
debug overlay and visualization options.
- Add debug overlay to "tag" each Canvas widget with some of its
details, like its Name and World Position. Can be enabled with the
environment variable DEBUG_CANVAS_LABEL=true
- Improved the FPS debug overlay to show in labeled columns and multiple
colors, with easy ability to add new data points to it.
Adds the `doodad` binary which will be a command line tool to work with
Doodads and Levels and assist with development.
The `doodad` binary has subcommands like git and the first command is
`convert` which converts between image files (PNG or BMP) and Doodle
drawing files (Level or Doodad). You can "screenshot" a level into a PNG
or you can initialize a new drawing from a PNG.
Adds the first features to Edit Mode to support creation of Doodad
files! The "New Doodad" button pops up a prompt for a Doodad size
(default 100px) and configures the Canvas widget and makes a Doodad
struct instead of a Level to manage.
* Move the custom Canvas widget from `level.Canvas` to `uix.Canvas`
(the uix package is for our custom UI widgets now)
* Rename the `doodads.Doodad` interface (for runtime instances of
Doodads) to `doodads.Actor` and make `doodads.Doodad` describe the
file format and JSON schema instead.
* Rename the `EditLevel()` method to `EditDrawing()` and it inspects the
file extension to know whether to launch the Edit Mode for a Level or
for a Doodad drawing.
* Doodads can be edited by using the `-edit` CLI flag or using the
in-game file open features (including `edit` command of dev console).
* Add a `Scrollable` boolean to uix.Canvas to restrict the keyboard
being able to scroll the level, for editing Doodads which have a fixed
size.
* Edit Mode now uses the Level object itself to keep the drawing data
rather than pull its Palette and Chunks out, so it can hang on to more
information. The Canvas widget is given references to the
Level.Palette and Level.Chunker via Canvas.LoadLevel()
* Fix the handoff between Edit Mode and Play Mode. They pass the Level
object back and forth and the Filename, because it's not part of the
Level. You can save the map with its original settings after returning
from Play Mode.
* Fix the collision detection in Play Mode. It broke previously when
palettes were added because of the difference between a render.Point
and a level.Pixel and it couldn't easily look up coordinates. The new
Chunker system provides a render.Point lookup API.
* All pixels are solid for collision right now, TODO is to return Swatch
information from the pixels touching the player character and react
accordingly (non-solid, fire flag, etc.)
* Remove the level.Grid type as it has been replaced by the Chunker.
* Clean up some unused variables and functions.
Starts the implementation of the chunk-based pixel storage system for
levels and drawings.
Previously the levels had a Pixels structure which was just an array of
X,Y and palette index triplets. The new chunk system divides the map up
into square chunks, and lets each chunk manage its own memory layout.
The "MapAccessor" layout is implemented first which is a map of X,Y
coordinates to their Swatches (pointer to an index of the palette). When
serialized the MapAccessor maps the "X,Y": "index" similarly to the old
Pixels array.
The object hierarchy for the chunk system is like:
* Chunker: the manager of the chunks who keeps track of the ChunkSize
and a map of "chunk coordinates" to the chunk in charge of it.
* Chunk: a part of the drawing ChunkSize length square. A chunk has a
Type (of how it stores its data, 0 being a map[Point]Swatch and 1
being a [][]Swatch 2D array), and the chunk has an Accessor which
implements the underlying type.
* Accessor: an interface for a Chunk to provide access to its
pixels.
* MapAccessor: a "sparse map" of coordinates to their Swatches.
* GridAccessor: TBD, will be a "dense" 2D grid of Swatches.
The JSON files are loaded in two passes:
1. The chunks only load their swatch indexes from disk.
2. With the palette also loaded, the chunks are "inflated" and linked
to their swatch pointers.
Misc changes:
* The `level.Canvas` UI widget switches from the old Grid data type to
being able to directly use a `level.Chunker`
* The Chunker is a shared data type between the on-disk level format and
the actual renderer (level.Canvas), so saving the level is easy
because you can just pull the Chunker out from the canvas.
* ChunkSize is stored inside the level file and the default value is at
balance/numbers.go: 1000
* Added a "menu toolbar" to the top of the Edit Mode with useful buttons
that work: New Level, New Doodad (same thing), Save, Save as, Open.
* Added ability for the dev console to prompt the user for a question,
which opens the console automatically. "Save", "Save as" and "Load"
ask for their filenames this way.
* Started groundwork for theming the app. The palette window is a light
brown with an orange title bar, the Menu Toolbar has a black
background, etc.
* Added support for multiple fonts instead of just monospace. DejaVu
Sans (normal and bold) are used now for most labels and window titles,
respectively. The dev console uses DejaVu Sans Mono as before.
* Update ui.Label to accept PadX and PadY separately instead of only
having the Padding option which did both.
* Improvements to Frame packing algorithm.
* Set the SDL draw mode to BLEND so we can use alpha colors properly,
so now the dev console is semi-translucent.
* Add ui.Window to easily create reusable windows with titles.
* Add a palette window (panel) to the right edge of the Edit Mode.
* Has Radio Buttons listing the colors available in the palette.
* Add palette support to Edit Mode so when you draw pixels, they take
on the color and attributes of the currently selected Swatch in your
palette.
* Revise the on-disk format to better serialize the Palette object to
JSON.
* Break Play Mode: collision detection fails because the Grid key
elements are now full Pixel objects (which retain their Palette and
Swatch properties).
* The Grid will need to be re-worked to separate X,Y coordinates from
the Pixel metadata to just test "is something there, and what is
it?"
First pass at a level storage format to save and restore maps.
To save a map: press F12. It takes a screenshot PNG into the
screenshots/ folder and outputs a map JSON in the working directory.
To restore a map: "go run cmd/doodle/main.go map.json"