Add the JSON format for embedding Actors (Doodad instances) inside of a
Level. I made a test map that manually inserted a couple of actors.
Actors are given to the Canvas responsible for the Level via the
function `InstallActors()`. So it means you'll call LoadLevel and then
InstallActors to hook everything up.
The Canvas creates sub-Canvas widgets from each Actor.
After drawing the main level geometry from the Canvas.Chunker, it calls
the drawActors() function which does the same but for Actors.
Levels keep a global map of all Actors that exist. For any Actors that
are visible within the Viewport, their sub-Canvas widgets are presented
appropriately on top of the parent Canvas. In case their sub-Canvas
overlaps the parent's boundaries, their sub-Canvas is resized and moved
appropriately.
- Allow the MainWindow to be resized at run time, and the UI
recalculates its sizing and position.
- Made the in-game Shell properties editable via environment variables.
The kirsle.env file sets a blue and pink color scheme.
- Begin the ground work for Levels and Doodads to embed files inside
their data via the level.FileSystem type.
- UI: Labels can now contain line break characters. It will
appropriately render multiple lines of render.Text and take into
account the proper BoxSize to contain them all.
- Add environment variable DOODLE_DEBUG_ALL=true that will turn on ALL
debug overlay and visualization options.
- Add debug overlay to "tag" each Canvas widget with some of its
details, like its Name and World Position. Can be enabled with the
environment variable DEBUG_CANVAS_LABEL=true
- Improved the FPS debug overlay to show in labeled columns and multiple
colors, with easy ability to add new data points to it.
Some of the constants in the `balance` package can be set at startup
time via environment variables. With this, you can customize the color
and style of the developer shell, turn on debugging visuals to outline
Canvas widgets, and more.
The parser is at `balance/debug.go` and human readable descriptions
are in the `balance/README.md`
Apart from putting the cached bitmaps in a better place, this about
finishes up the texture caching optimization and IT IS FAST!
When I spam drag a lot of pixels around the FPS may drop to the 40's but
once the caches are warmed up the FPS returns to 60 and stays there,
even if the screen is very busy with pixels.
An undocumented debug feature: set the environment variable
DEBUG_CHUNK_COLOR='#00FFFF' to set a bitmap background color besides
white to be used when caching the chunks. It helps to visualize where on
the screen the bitmaps are being used. May go away in the future.
Changes:
- Found that the old default chunk size of 1000 was slow to generate
bitmap images to cache. The 100px test size was fast and 128 sounds
like a good middle ground number to pick for now.
- Fixed all the problems with scroll behavior and offset by inverting
the sign of the scroll behavior. Scrolling to the Right and Down
actually subtracts X,Y values instead of adds them.
NOTICE: Chunk size set to 100 for visual testing!
NOTICE: guitest references a bmp file that isn't checked in!
BUGS REMAINING:
- When scrolling the level in Edit Mode, some of the chunks will pop
out of existence randomly.
- When clicking-dragging to draw in Edit Mode, if the scroll position
is not at 0,0 then the pixels drawn will be offset from the cursor.
- These are to do with the Scroll position and chunk coordinate calc
functions probably.
Implements a texture caching interface to stop redrawing everything
pixel by pixel on every frame.
The texture caching workflow is briefly:
- The uix.Canvas widget's Present() function iterates over the list of
Chunk Coordinates that are visible inside of the current viewport
(i.e. viewable on screen)
- For each Chunk:
- Make it render and/or return its cached Texture object.
- Work out how much of the Chunk will be visible and how to crop the
boxes for the Copy()
- Copy the cached Texture instead of drawing all the pixels every
time like we were doing before.
- The Chunk.Texture() function that returns said Texture:
- It calls Chunk.ToBitmap() to save a bitmap on disk.
- It calls Engine.NewBitmap() to get a Texture it can hang onto.
- It hangs onto the Texture and returns it on future calls.
- Any call to Set() or Delete() a pixel will invalidate the cache
(mark the Chunk "dirty") and Texture() will rebuild next call.
The interface `render.Texturer` provides a way for rendering backends
(SDL2, OpenGL) to transport a "texture" of their own kind without
exposing the type details to the user.
The interface `render.Engine` adds two new methods:
* NewBitmap(filename string) (Texturer, error)
* Copy(t Texturer, src, dst Rect)
NewBitmap should open a bitmap image on disk and return it wrapped in a
Texturer (really it's an SDL2 Texture). This is for caching purposes.
Next the Copy() function blits the texture onto the screen renderer
using the source and destination rectangles.
The uix.Canvas widget orchestrates the caching for the drawing it's
responsible for. It queries which chunks are viewable in the Canvas
viewport (scroll and bounding boxes), has each chunk render out their
entire bitmap image to then cache them as SDL textures and then only
_those_ need to be copied out to the renderer each frame.
The frame rate now sits at a decent 60 FPS even when the drawing gets
messy and full of lines. Each unique version of each chunk needs to
render only one time and then it's a fast copy operation for future
ticks.
Other changes:
- Chunker now assigns each Chunk what their coordinate and size are, so
that the chunk can self reference that information. This info is
considered read-only but that isn't really enforced.
- Add Chunker.IterViewportChunks() that returns a channel of Chunk
Coordinates that are visible in your viewport, rather than iterating
over all of the pixels in all of those chunks.
- Add Chunk.ToBitmap(filename) that causes a Chunk to render its pixels
to a bitmap image on disk. SDL2 can natively speak Bitmaps for texture
caching. Currently these go to files in /tmp but will soon go into your
$XDG_CACHE_FOLDER instead.
- Add Chunk.Texture() that causes a Chunk to render and then return a
cached bitmap texture of the pixels it's responsible for. The texture
is cached until the Chunk is next modified with Set() or Delete().
- UI: add an Image widget that currently just shows a bitmap image. It
was the first test for caching bitmap images for efficiency. Can show
any *.bmp file on disk!
- Editor UI: make the StatusBar boxes dynamically build from an array
of string pointers to make it SUPER EASY to add/remove labels.
* Increase the default window size from 800x600 to 1024x768.
* Move the drawing canvas in EditorMode to inside the EditorUI where it can
be better managed with the other widgets it shares the screen with.
* Slightly fix Frame packing bug (with East orientation) that was causing
right-aligned statusbar items to be partially cropped off-screen. Moved a
couple statusbar labels in EditorMode to the right.
* Add `Parent()` and `Adopt()` methods to widgets for when they're managed
by containers like the Frame.
* Add utility functions to UI toolkit for computing a widget's Absolute
Position and Absolute Rect, by crawling all parent widgets and summing
them up.
* Add `lib/debugging` package with useful stack tracing utilities.
* Add `make guitest` to launch the program into the GUI Test.
The command line flag is: `doodle -guitest`
* Console: add a `close` command which returns to the MainScene.
* Initialize the font cache directory (~/.cache/doodle/fonts) but don't
extract the fonts there yet.
Adds the first features to Edit Mode to support creation of Doodad
files! The "New Doodad" button pops up a prompt for a Doodad size
(default 100px) and configures the Canvas widget and makes a Doodad
struct instead of a Level to manage.
* Move the custom Canvas widget from `level.Canvas` to `uix.Canvas`
(the uix package is for our custom UI widgets now)
* Rename the `doodads.Doodad` interface (for runtime instances of
Doodads) to `doodads.Actor` and make `doodads.Doodad` describe the
file format and JSON schema instead.
* Rename the `EditLevel()` method to `EditDrawing()` and it inspects the
file extension to know whether to launch the Edit Mode for a Level or
for a Doodad drawing.
* Doodads can be edited by using the `-edit` CLI flag or using the
in-game file open features (including `edit` command of dev console).
* Add a `Scrollable` boolean to uix.Canvas to restrict the keyboard
being able to scroll the level, for editing Doodads which have a fixed
size.
Starts the implementation of the chunk-based pixel storage system for
levels and drawings.
Previously the levels had a Pixels structure which was just an array of
X,Y and palette index triplets. The new chunk system divides the map up
into square chunks, and lets each chunk manage its own memory layout.
The "MapAccessor" layout is implemented first which is a map of X,Y
coordinates to their Swatches (pointer to an index of the palette). When
serialized the MapAccessor maps the "X,Y": "index" similarly to the old
Pixels array.
The object hierarchy for the chunk system is like:
* Chunker: the manager of the chunks who keeps track of the ChunkSize
and a map of "chunk coordinates" to the chunk in charge of it.
* Chunk: a part of the drawing ChunkSize length square. A chunk has a
Type (of how it stores its data, 0 being a map[Point]Swatch and 1
being a [][]Swatch 2D array), and the chunk has an Accessor which
implements the underlying type.
* Accessor: an interface for a Chunk to provide access to its
pixels.
* MapAccessor: a "sparse map" of coordinates to their Swatches.
* GridAccessor: TBD, will be a "dense" 2D grid of Swatches.
The JSON files are loaded in two passes:
1. The chunks only load their swatch indexes from disk.
2. With the palette also loaded, the chunks are "inflated" and linked
to their swatch pointers.
Misc changes:
* The `level.Canvas` UI widget switches from the old Grid data type to
being able to directly use a `level.Chunker`
* The Chunker is a shared data type between the on-disk level format and
the actual renderer (level.Canvas), so saving the level is easy
because you can just pull the Chunker out from the canvas.
* ChunkSize is stored inside the level file and the default value is at
balance/numbers.go: 1000
The `level.Canvas` is a widget that holds onto its Palette and Grid and
has interactions to allow scrolling and editing the grid using the
swatches available on the palette.
Thus all of the logic in the Editor Mode for drawing directly onto the
root SDL surface are now handled inside a level.Canvas instance.
The `level.Canvas` widget has the following properties:
* Like any widget it has an X,Y position and a width/height.
* It has a Scroll position to control which slice of its drawing will be
visible inside its bounding box.
* It supports levels having negative coordinates for their pixels. It
doesn't care. The default Scroll position is (0,0) at the top left
corner of the widget but you can scroll into the negatives and see the
negative pixels.
* Keyboard keys will scroll the viewport inside the canvas.
* The canvas draws only the pixels that are visible inside its bounding
box.
This feature will eventually pave the way toward:
* Doodads being dropped on top of your map, each Doodad being its own
Canvas widget.
* Using drawings as button icons for the user interface, as the Canvas
is a normal widget.
* Added a "menu toolbar" to the top of the Edit Mode with useful buttons
that work: New Level, New Doodad (same thing), Save, Save as, Open.
* Added ability for the dev console to prompt the user for a question,
which opens the console automatically. "Save", "Save as" and "Load"
ask for their filenames this way.
* Started groundwork for theming the app. The palette window is a light
brown with an orange title bar, the Menu Toolbar has a black
background, etc.
* Added support for multiple fonts instead of just monospace. DejaVu
Sans (normal and bold) are used now for most labels and window titles,
respectively. The dev console uses DejaVu Sans Mono as before.
* Update ui.Label to accept PadX and PadY separately instead of only
having the Padding option which did both.
* Improvements to Frame packing algorithm.
* Set the SDL draw mode to BLEND so we can use alpha colors properly,
so now the dev console is semi-translucent.
* Added `BoxSize()` to Widget that reports the full box size including
borders and margin.
* The Frame uses the `BoxSize()` of widgets to position them.
Reintroduces some padding issues (boxes on the GUI Test stick out of
bounds a bit) but is on the right track.
* Renamed `Padding` to `Margin` on the Widget object, since the Margin
is taken into consideration along with Outline and Border in computing
the widget's BoxSize.
* Restructured the Label widget to take a Text or TextVariable property
and the font settings (render.Text) are in a new `Font` property.
Known bugs:
* The Pixel format in the Grid has DX and DY attributes and
it wreaks havoc on collision detection in Play Mode when you
come straight from the editor. Reloading the map from disk to
play is OK cuz it lacks these attrs.
Implements the dev console in-game with various commands to start out
with.
Press the Enter key to show or hide the console. Commands supported:
new
Start a new map in Edit Mode.
save [filename.json]
Save the current map to disk. Filename is required unless you
have saved recently.
edit filename.json
Open a map from disk in Edit Mode.
play filename.json
Play a map from disk in Play Mode.