doodle/pkg/level/chunker.go

255 lines
6.5 KiB
Go
Raw Normal View History

Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
package level
import (
"encoding/json"
"fmt"
"math"
"git.kirsle.net/apps/doodle/lib/render"
"github.com/vmihailenco/msgpack"
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
)
// Chunker is the data structure that manages the chunks of a level, and
// provides the API to interact with the pixels using their absolute coordinates
// while abstracting away the underlying details.
type Chunker struct {
Size int `json:"size"`
Chunks ChunkMap `json:"chunks"`
}
// NewChunker creates a new chunk manager with a given chunk size.
func NewChunker(size int) *Chunker {
return &Chunker{
Size: size,
Chunks: ChunkMap{},
}
}
// Inflate iterates over the pixels in the (loaded) chunks and expands any
// Sparse Swatches (which have only their palette index, from the file format
// on disk) to connect references to the swatches in the palette.
func (c *Chunker) Inflate(pal *Palette) error {
for coord, chunk := range c.Chunks {
WIP Texture Caching NOTICE: Chunk size set to 100 for visual testing! NOTICE: guitest references a bmp file that isn't checked in! BUGS REMAINING: - When scrolling the level in Edit Mode, some of the chunks will pop out of existence randomly. - When clicking-dragging to draw in Edit Mode, if the scroll position is not at 0,0 then the pixels drawn will be offset from the cursor. - These are to do with the Scroll position and chunk coordinate calc functions probably. Implements a texture caching interface to stop redrawing everything pixel by pixel on every frame. The texture caching workflow is briefly: - The uix.Canvas widget's Present() function iterates over the list of Chunk Coordinates that are visible inside of the current viewport (i.e. viewable on screen) - For each Chunk: - Make it render and/or return its cached Texture object. - Work out how much of the Chunk will be visible and how to crop the boxes for the Copy() - Copy the cached Texture instead of drawing all the pixels every time like we were doing before. - The Chunk.Texture() function that returns said Texture: - It calls Chunk.ToBitmap() to save a bitmap on disk. - It calls Engine.NewBitmap() to get a Texture it can hang onto. - It hangs onto the Texture and returns it on future calls. - Any call to Set() or Delete() a pixel will invalidate the cache (mark the Chunk "dirty") and Texture() will rebuild next call. The interface `render.Texturer` provides a way for rendering backends (SDL2, OpenGL) to transport a "texture" of their own kind without exposing the type details to the user. The interface `render.Engine` adds two new methods: * NewBitmap(filename string) (Texturer, error) * Copy(t Texturer, src, dst Rect) NewBitmap should open a bitmap image on disk and return it wrapped in a Texturer (really it's an SDL2 Texture). This is for caching purposes. Next the Copy() function blits the texture onto the screen renderer using the source and destination rectangles. The uix.Canvas widget orchestrates the caching for the drawing it's responsible for. It queries which chunks are viewable in the Canvas viewport (scroll and bounding boxes), has each chunk render out their entire bitmap image to then cache them as SDL textures and then only _those_ need to be copied out to the renderer each frame. The frame rate now sits at a decent 60 FPS even when the drawing gets messy and full of lines. Each unique version of each chunk needs to render only one time and then it's a fast copy operation for future ticks. Other changes: - Chunker now assigns each Chunk what their coordinate and size are, so that the chunk can self reference that information. This info is considered read-only but that isn't really enforced. - Add Chunker.IterViewportChunks() that returns a channel of Chunk Coordinates that are visible in your viewport, rather than iterating over all of the pixels in all of those chunks. - Add Chunk.ToBitmap(filename) that causes a Chunk to render its pixels to a bitmap image on disk. SDL2 can natively speak Bitmaps for texture caching. Currently these go to files in /tmp but will soon go into your $XDG_CACHE_FOLDER instead. - Add Chunk.Texture() that causes a Chunk to render and then return a cached bitmap texture of the pixels it's responsible for. The texture is cached until the Chunk is next modified with Set() or Delete(). - UI: add an Image widget that currently just shows a bitmap image. It was the first test for caching bitmap images for efficiency. Can show any *.bmp file on disk! - Editor UI: make the StatusBar boxes dynamically build from an array of string pointers to make it SUPER EASY to add/remove labels.
2018-10-18 03:52:14 +00:00
chunk.Point = coord
chunk.Size = c.Size
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
chunk.Inflate(pal)
}
return nil
}
// IterViewport returns a channel to iterate every point that exists within
// the viewport rect.
func (c *Chunker) IterViewport(viewport render.Rect) <-chan Pixel {
pipe := make(chan Pixel)
go func() {
// Get the chunk box coordinates.
var (
topLeft = c.ChunkCoordinate(render.NewPoint(viewport.X, viewport.Y))
bottomRight = c.ChunkCoordinate(render.Point{
X: viewport.X + viewport.W,
Y: viewport.Y + viewport.H,
})
)
for cx := topLeft.X; cx <= bottomRight.X; cx++ {
for cy := topLeft.Y; cy <= bottomRight.Y; cy++ {
if chunk, ok := c.GetChunk(render.NewPoint(cx, cy)); ok {
for px := range chunk.Iter() {
// Verify this pixel is also in range.
if px.Point().Inside(viewport) {
pipe <- px
}
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
}
}
}
}
close(pipe)
}()
return pipe
}
WIP Texture Caching NOTICE: Chunk size set to 100 for visual testing! NOTICE: guitest references a bmp file that isn't checked in! BUGS REMAINING: - When scrolling the level in Edit Mode, some of the chunks will pop out of existence randomly. - When clicking-dragging to draw in Edit Mode, if the scroll position is not at 0,0 then the pixels drawn will be offset from the cursor. - These are to do with the Scroll position and chunk coordinate calc functions probably. Implements a texture caching interface to stop redrawing everything pixel by pixel on every frame. The texture caching workflow is briefly: - The uix.Canvas widget's Present() function iterates over the list of Chunk Coordinates that are visible inside of the current viewport (i.e. viewable on screen) - For each Chunk: - Make it render and/or return its cached Texture object. - Work out how much of the Chunk will be visible and how to crop the boxes for the Copy() - Copy the cached Texture instead of drawing all the pixels every time like we were doing before. - The Chunk.Texture() function that returns said Texture: - It calls Chunk.ToBitmap() to save a bitmap on disk. - It calls Engine.NewBitmap() to get a Texture it can hang onto. - It hangs onto the Texture and returns it on future calls. - Any call to Set() or Delete() a pixel will invalidate the cache (mark the Chunk "dirty") and Texture() will rebuild next call. The interface `render.Texturer` provides a way for rendering backends (SDL2, OpenGL) to transport a "texture" of their own kind without exposing the type details to the user. The interface `render.Engine` adds two new methods: * NewBitmap(filename string) (Texturer, error) * Copy(t Texturer, src, dst Rect) NewBitmap should open a bitmap image on disk and return it wrapped in a Texturer (really it's an SDL2 Texture). This is for caching purposes. Next the Copy() function blits the texture onto the screen renderer using the source and destination rectangles. The uix.Canvas widget orchestrates the caching for the drawing it's responsible for. It queries which chunks are viewable in the Canvas viewport (scroll and bounding boxes), has each chunk render out their entire bitmap image to then cache them as SDL textures and then only _those_ need to be copied out to the renderer each frame. The frame rate now sits at a decent 60 FPS even when the drawing gets messy and full of lines. Each unique version of each chunk needs to render only one time and then it's a fast copy operation for future ticks. Other changes: - Chunker now assigns each Chunk what their coordinate and size are, so that the chunk can self reference that information. This info is considered read-only but that isn't really enforced. - Add Chunker.IterViewportChunks() that returns a channel of Chunk Coordinates that are visible in your viewport, rather than iterating over all of the pixels in all of those chunks. - Add Chunk.ToBitmap(filename) that causes a Chunk to render its pixels to a bitmap image on disk. SDL2 can natively speak Bitmaps for texture caching. Currently these go to files in /tmp but will soon go into your $XDG_CACHE_FOLDER instead. - Add Chunk.Texture() that causes a Chunk to render and then return a cached bitmap texture of the pixels it's responsible for. The texture is cached until the Chunk is next modified with Set() or Delete(). - UI: add an Image widget that currently just shows a bitmap image. It was the first test for caching bitmap images for efficiency. Can show any *.bmp file on disk! - Editor UI: make the StatusBar boxes dynamically build from an array of string pointers to make it SUPER EASY to add/remove labels.
2018-10-18 03:52:14 +00:00
// IterViewportChunks returns a channel to iterate over the Chunk objects that
// appear within the viewport rect, instead of the pixels in each chunk.
func (c *Chunker) IterViewportChunks(viewport render.Rect) <-chan render.Point {
pipe := make(chan render.Point)
go func() {
sent := make(map[render.Point]interface{})
WIP Texture Caching NOTICE: Chunk size set to 100 for visual testing! NOTICE: guitest references a bmp file that isn't checked in! BUGS REMAINING: - When scrolling the level in Edit Mode, some of the chunks will pop out of existence randomly. - When clicking-dragging to draw in Edit Mode, if the scroll position is not at 0,0 then the pixels drawn will be offset from the cursor. - These are to do with the Scroll position and chunk coordinate calc functions probably. Implements a texture caching interface to stop redrawing everything pixel by pixel on every frame. The texture caching workflow is briefly: - The uix.Canvas widget's Present() function iterates over the list of Chunk Coordinates that are visible inside of the current viewport (i.e. viewable on screen) - For each Chunk: - Make it render and/or return its cached Texture object. - Work out how much of the Chunk will be visible and how to crop the boxes for the Copy() - Copy the cached Texture instead of drawing all the pixels every time like we were doing before. - The Chunk.Texture() function that returns said Texture: - It calls Chunk.ToBitmap() to save a bitmap on disk. - It calls Engine.NewBitmap() to get a Texture it can hang onto. - It hangs onto the Texture and returns it on future calls. - Any call to Set() or Delete() a pixel will invalidate the cache (mark the Chunk "dirty") and Texture() will rebuild next call. The interface `render.Texturer` provides a way for rendering backends (SDL2, OpenGL) to transport a "texture" of their own kind without exposing the type details to the user. The interface `render.Engine` adds two new methods: * NewBitmap(filename string) (Texturer, error) * Copy(t Texturer, src, dst Rect) NewBitmap should open a bitmap image on disk and return it wrapped in a Texturer (really it's an SDL2 Texture). This is for caching purposes. Next the Copy() function blits the texture onto the screen renderer using the source and destination rectangles. The uix.Canvas widget orchestrates the caching for the drawing it's responsible for. It queries which chunks are viewable in the Canvas viewport (scroll and bounding boxes), has each chunk render out their entire bitmap image to then cache them as SDL textures and then only _those_ need to be copied out to the renderer each frame. The frame rate now sits at a decent 60 FPS even when the drawing gets messy and full of lines. Each unique version of each chunk needs to render only one time and then it's a fast copy operation for future ticks. Other changes: - Chunker now assigns each Chunk what their coordinate and size are, so that the chunk can self reference that information. This info is considered read-only but that isn't really enforced. - Add Chunker.IterViewportChunks() that returns a channel of Chunk Coordinates that are visible in your viewport, rather than iterating over all of the pixels in all of those chunks. - Add Chunk.ToBitmap(filename) that causes a Chunk to render its pixels to a bitmap image on disk. SDL2 can natively speak Bitmaps for texture caching. Currently these go to files in /tmp but will soon go into your $XDG_CACHE_FOLDER instead. - Add Chunk.Texture() that causes a Chunk to render and then return a cached bitmap texture of the pixels it's responsible for. The texture is cached until the Chunk is next modified with Set() or Delete(). - UI: add an Image widget that currently just shows a bitmap image. It was the first test for caching bitmap images for efficiency. Can show any *.bmp file on disk! - Editor UI: make the StatusBar boxes dynamically build from an array of string pointers to make it SUPER EASY to add/remove labels.
2018-10-18 03:52:14 +00:00
for x := viewport.X; x < viewport.W; x += int32(c.Size / 4) {
for y := viewport.Y; y < viewport.H; y += int32(c.Size / 4) {
// Constrain this chunksize step to a point within the bounds
// of the viewport. This can yield partial chunks on the edges
// of the viewport.
point := render.NewPoint(x, y)
if point.X < viewport.X {
point.X = viewport.X
} else if point.X > viewport.X+viewport.W {
point.X = viewport.X + viewport.W
}
if point.Y < viewport.Y {
point.Y = viewport.Y
} else if point.Y > viewport.Y+viewport.H {
point.Y = viewport.Y + viewport.H
}
// Translate to a chunk coordinate, dedupe and send it.
coord := c.ChunkCoordinate(render.NewPoint(x, y))
if _, ok := sent[coord]; ok {
continue
}
sent[coord] = nil
if _, ok := c.GetChunk(coord); ok {
pipe <- coord
}
}
}
close(pipe)
}()
return pipe
}
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
// IterPixels returns a channel to iterate over every pixel in the entire
// chunker.
func (c *Chunker) IterPixels() <-chan Pixel {
pipe := make(chan Pixel)
go func() {
for _, chunk := range c.Chunks {
for px := range chunk.Iter() {
pipe <- px
}
}
close(pipe)
}()
return pipe
}
// WorldSize returns the bounding coordinates that the Chunker has chunks to
// manage: the lowest pixels from the lowest chunks to the highest pixels of
// the highest chunks.
func (c *Chunker) WorldSize() render.Rect {
// Lowest and highest chunks.
var (
chunkLowest render.Point
chunkHighest render.Point
size = int32(c.Size)
)
for coord := range c.Chunks {
if coord.X < chunkLowest.X {
chunkLowest.X = coord.X
}
if coord.Y < chunkLowest.Y {
chunkLowest.Y = coord.Y
}
if coord.X > chunkHighest.X {
chunkHighest.X = coord.X
}
if coord.Y > chunkHighest.Y {
chunkHighest.Y = coord.Y
}
}
return render.Rect{
X: chunkLowest.X * size,
Y: chunkLowest.Y * size,
W: (chunkHighest.X * size) + (size - 1),
H: (chunkHighest.Y * size) + (size - 1),
}
}
// WorldSizePositive returns the WorldSize anchored to 0,0 with only positive
// coordinates.
func (c *Chunker) WorldSizePositive() render.Rect {
S := c.WorldSize()
return render.Rect{
X: 0,
Y: 0,
W: int32(math.Abs(float64(S.X))) + S.W,
H: int32(math.Abs(float64(S.Y))) + S.H,
}
}
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
// GetChunk gets a chunk at a certain position. Returns false if not found.
func (c *Chunker) GetChunk(p render.Point) (*Chunk, bool) {
chunk, ok := c.Chunks[p]
return chunk, ok
}
// Get a pixel at the given coordinate. Returns the Palette entry for that
// pixel or else returns an error if not found.
func (c *Chunker) Get(p render.Point) (*Swatch, error) {
// Compute the chunk coordinate.
coord := c.ChunkCoordinate(p)
if chunk, ok := c.Chunks[coord]; ok {
return chunk.Get(p)
}
return nil, fmt.Errorf("no chunk %s exists for point %s", coord, p)
}
// Set a pixel at the given coordinate.
func (c *Chunker) Set(p render.Point, sw *Swatch) error {
coord := c.ChunkCoordinate(p)
chunk, ok := c.Chunks[coord]
if !ok {
chunk = NewChunk()
c.Chunks[coord] = chunk
WIP Texture Caching NOTICE: Chunk size set to 100 for visual testing! NOTICE: guitest references a bmp file that isn't checked in! BUGS REMAINING: - When scrolling the level in Edit Mode, some of the chunks will pop out of existence randomly. - When clicking-dragging to draw in Edit Mode, if the scroll position is not at 0,0 then the pixels drawn will be offset from the cursor. - These are to do with the Scroll position and chunk coordinate calc functions probably. Implements a texture caching interface to stop redrawing everything pixel by pixel on every frame. The texture caching workflow is briefly: - The uix.Canvas widget's Present() function iterates over the list of Chunk Coordinates that are visible inside of the current viewport (i.e. viewable on screen) - For each Chunk: - Make it render and/or return its cached Texture object. - Work out how much of the Chunk will be visible and how to crop the boxes for the Copy() - Copy the cached Texture instead of drawing all the pixels every time like we were doing before. - The Chunk.Texture() function that returns said Texture: - It calls Chunk.ToBitmap() to save a bitmap on disk. - It calls Engine.NewBitmap() to get a Texture it can hang onto. - It hangs onto the Texture and returns it on future calls. - Any call to Set() or Delete() a pixel will invalidate the cache (mark the Chunk "dirty") and Texture() will rebuild next call. The interface `render.Texturer` provides a way for rendering backends (SDL2, OpenGL) to transport a "texture" of their own kind without exposing the type details to the user. The interface `render.Engine` adds two new methods: * NewBitmap(filename string) (Texturer, error) * Copy(t Texturer, src, dst Rect) NewBitmap should open a bitmap image on disk and return it wrapped in a Texturer (really it's an SDL2 Texture). This is for caching purposes. Next the Copy() function blits the texture onto the screen renderer using the source and destination rectangles. The uix.Canvas widget orchestrates the caching for the drawing it's responsible for. It queries which chunks are viewable in the Canvas viewport (scroll and bounding boxes), has each chunk render out their entire bitmap image to then cache them as SDL textures and then only _those_ need to be copied out to the renderer each frame. The frame rate now sits at a decent 60 FPS even when the drawing gets messy and full of lines. Each unique version of each chunk needs to render only one time and then it's a fast copy operation for future ticks. Other changes: - Chunker now assigns each Chunk what their coordinate and size are, so that the chunk can self reference that information. This info is considered read-only but that isn't really enforced. - Add Chunker.IterViewportChunks() that returns a channel of Chunk Coordinates that are visible in your viewport, rather than iterating over all of the pixels in all of those chunks. - Add Chunk.ToBitmap(filename) that causes a Chunk to render its pixels to a bitmap image on disk. SDL2 can natively speak Bitmaps for texture caching. Currently these go to files in /tmp but will soon go into your $XDG_CACHE_FOLDER instead. - Add Chunk.Texture() that causes a Chunk to render and then return a cached bitmap texture of the pixels it's responsible for. The texture is cached until the Chunk is next modified with Set() or Delete(). - UI: add an Image widget that currently just shows a bitmap image. It was the first test for caching bitmap images for efficiency. Can show any *.bmp file on disk! - Editor UI: make the StatusBar boxes dynamically build from an array of string pointers to make it SUPER EASY to add/remove labels.
2018-10-18 03:52:14 +00:00
chunk.Point = coord
chunk.Size = c.Size
Implement Chunk System for Pixel Data Starts the implementation of the chunk-based pixel storage system for levels and drawings. Previously the levels had a Pixels structure which was just an array of X,Y and palette index triplets. The new chunk system divides the map up into square chunks, and lets each chunk manage its own memory layout. The "MapAccessor" layout is implemented first which is a map of X,Y coordinates to their Swatches (pointer to an index of the palette). When serialized the MapAccessor maps the "X,Y": "index" similarly to the old Pixels array. The object hierarchy for the chunk system is like: * Chunker: the manager of the chunks who keeps track of the ChunkSize and a map of "chunk coordinates" to the chunk in charge of it. * Chunk: a part of the drawing ChunkSize length square. A chunk has a Type (of how it stores its data, 0 being a map[Point]Swatch and 1 being a [][]Swatch 2D array), and the chunk has an Accessor which implements the underlying type. * Accessor: an interface for a Chunk to provide access to its pixels. * MapAccessor: a "sparse map" of coordinates to their Swatches. * GridAccessor: TBD, will be a "dense" 2D grid of Swatches. The JSON files are loaded in two passes: 1. The chunks only load their swatch indexes from disk. 2. With the palette also loaded, the chunks are "inflated" and linked to their swatch pointers. Misc changes: * The `level.Canvas` UI widget switches from the old Grid data type to being able to directly use a `level.Chunker` * The Chunker is a shared data type between the on-disk level format and the actual renderer (level.Canvas), so saving the level is easy because you can just pull the Chunker out from the canvas. * ChunkSize is stored inside the level file and the default value is at balance/numbers.go: 1000
2018-09-23 22:20:45 +00:00
}
return chunk.Set(p, sw)
}
// Delete a pixel at the given coordinate.
func (c *Chunker) Delete(p render.Point) error {
coord := c.ChunkCoordinate(p)
if chunk, ok := c.Chunks[coord]; ok {
return chunk.Delete(p)
}
return fmt.Errorf("no chunk %s exists for point %s", coord, p)
}
// ChunkCoordinate computes a chunk coordinate from an absolute coordinate.
func (c *Chunker) ChunkCoordinate(abs render.Point) render.Point {
if c.Size == 0 {
return render.Point{}
}
size := float64(c.Size)
return render.NewPoint(
int32(math.Floor(float64(abs.X)/size)),
int32(math.Floor(float64(abs.Y)/size)),
)
}
// ChunkMap maps a chunk coordinate to its chunk data.
type ChunkMap map[render.Point]*Chunk
// MarshalJSON to convert the chunk map to JSON. This is needed for writing so
// the JSON encoder knows how to serializes a `map[Point]*Chunk` but the inverse
// is not necessary to implement.
func (c ChunkMap) MarshalJSON() ([]byte, error) {
dict := map[string]*Chunk{}
for point, chunk := range c {
dict[point.String()] = chunk
}
out, err := json.Marshal(dict)
return out, err
}
// MarshalMsgpack to convert the chunk map to binary.
func (c ChunkMap) MarshalMsgpack() ([]byte, error) {
dict := map[string]*Chunk{}
for point, chunk := range c {
dict[point.String()] = chunk
}
out, err := msgpack.Marshal(dict)
return out, err
}