doodle/lib/render/rect_test.go

72 lines
1.3 KiB
Go
Raw Permalink Normal View History

Draw Actors Embedded in Levels in Edit Mode Add the JSON format for embedding Actors (Doodad instances) inside of a Level. I made a test map that manually inserted a couple of actors. Actors are given to the Canvas responsible for the Level via the function `InstallActors()`. So it means you'll call LoadLevel and then InstallActors to hook everything up. The Canvas creates sub-Canvas widgets from each Actor. After drawing the main level geometry from the Canvas.Chunker, it calls the drawActors() function which does the same but for Actors. Levels keep a global map of all Actors that exist. For any Actors that are visible within the Viewport, their sub-Canvas widgets are presented appropriately on top of the parent Canvas. In case their sub-Canvas overlaps the parent's boundaries, their sub-Canvas is resized and moved appropriately. - Allow the MainWindow to be resized at run time, and the UI recalculates its sizing and position. - Made the in-game Shell properties editable via environment variables. The kirsle.env file sets a blue and pink color scheme. - Begin the ground work for Levels and Doodads to embed files inside their data via the level.FileSystem type. - UI: Labels can now contain line break characters. It will appropriately render multiple lines of render.Text and take into account the proper BoxSize to contain them all. - Add environment variable DOODLE_DEBUG_ALL=true that will turn on ALL debug overlay and visualization options. - Add debug overlay to "tag" each Canvas widget with some of its details, like its Name and World Position. Can be enabled with the environment variable DEBUG_CANVAS_LABEL=true - Improved the FPS debug overlay to show in labeled columns and multiple colors, with easy ability to add new data points to it.
2018-10-19 20:31:58 +00:00
package render_test
import (
"strconv"
"testing"
"git.kirsle.net/apps/doodle/lib/render"
Draw Actors Embedded in Levels in Edit Mode Add the JSON format for embedding Actors (Doodad instances) inside of a Level. I made a test map that manually inserted a couple of actors. Actors are given to the Canvas responsible for the Level via the function `InstallActors()`. So it means you'll call LoadLevel and then InstallActors to hook everything up. The Canvas creates sub-Canvas widgets from each Actor. After drawing the main level geometry from the Canvas.Chunker, it calls the drawActors() function which does the same but for Actors. Levels keep a global map of all Actors that exist. For any Actors that are visible within the Viewport, their sub-Canvas widgets are presented appropriately on top of the parent Canvas. In case their sub-Canvas overlaps the parent's boundaries, their sub-Canvas is resized and moved appropriately. - Allow the MainWindow to be resized at run time, and the UI recalculates its sizing and position. - Made the in-game Shell properties editable via environment variables. The kirsle.env file sets a blue and pink color scheme. - Begin the ground work for Levels and Doodads to embed files inside their data via the level.FileSystem type. - UI: Labels can now contain line break characters. It will appropriately render multiple lines of render.Text and take into account the proper BoxSize to contain them all. - Add environment variable DOODLE_DEBUG_ALL=true that will turn on ALL debug overlay and visualization options. - Add debug overlay to "tag" each Canvas widget with some of its details, like its Name and World Position. Can be enabled with the environment variable DEBUG_CANVAS_LABEL=true - Improved the FPS debug overlay to show in labeled columns and multiple colors, with easy ability to add new data points to it.
2018-10-19 20:31:58 +00:00
)
func TestIntersection(t *testing.T) {
newRect := func(x, y, w, h int) render.Rect {
return render.Rect{
X: int32(x),
Y: int32(y),
W: int32(w),
H: int32(h),
}
}
type TestCase struct {
A render.Rect
B render.Rect
Expect bool
}
var tests = []TestCase{
{
A: newRect(0, 0, 1000, 1000),
B: newRect(200, 200, 100, 100),
Expect: true,
},
{
A: newRect(200, 200, 100, 100),
B: newRect(0, 0, 1000, 1000),
Expect: true,
},
{
A: newRect(0, 0, 100, 100),
B: newRect(100, 0, 100, 100),
Expect: true,
},
{
A: newRect(0, 0, 99, 99),
B: newRect(100, 0, 99, 99),
Expect: false,
},
{
// Real coords of a test doodad!
A: newRect(183, 256, 283, 356),
B: newRect(0, -232, 874, 490),
Expect: true,
},
{
A: newRect(183, 256, 283, 356),
B: newRect(0, -240, 874, 490),
Expect: false, // XXX: must be true
},
}
for _, test := range tests {
actual := test.A.Intersects(test.B)
if actual != test.Expect {
t.Errorf(
"%s collision with %s: expected %s, got %s",
test.A,
test.B,
strconv.FormatBool(test.Expect),
strconv.FormatBool(actual),
)
}
}
}